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Abstract We formulate a new class of optimization-based methods for data transfer
(remap) of a scalar conserved quantity between two close meshes with the same
connectivity. We present the methods in the context of the remap of a mass density
field, which preserves global mass (the integral of the density over the computational
domain). The key idea is to formulate remap as a global inequality-constrained op-
timization problem for mass fluxes between neighboring cells. The objective is to
minimize the discrepancy between these fluxes and the given high-order target mass
fluxes, subject to constraints that enforce physically motivated bounds on the asso-
ciated primitive variable. In so doing, we separate accuracy considerations, han-
dled by the objective functional, from the enforcement of physical bounds, handled
by the constraints. The resulting second-order, conservative, and bound-preserving
optimization-based remap (OBR) formulation is applicable to general, unstructured,
heterogeneous grids. Under some weak requirements on grid proximity we prove
that the OBR algorithm preserves linear fields in one, two and three dimensions. The
chapter also examines connections between the OBR and the flux-corrected remap
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(FCR), which can be interpreted as a modified version of OBR (M-OBR), with the
same objective but a smaller feasible set. The feasible set for M-OBR (FCR) is
given by simple box constraints derived by using a “worst-case” scenario approach,
which may result in loss of linearity preservation and ultimately accuracy for some
grid motions. The optimality of the OBR solution means that, given a set of tar-
get fluxes and a distance measure, OBR finds the best possible approximations of
these fluxes with respect to this measure, which also satisfy the physically moti-
vated bounds. In this sense, OBR can serve as a natural benchmark for evaluating
the accuracy of existing and future numerical methods for data transfer with respect
to a given class of flux reconstruction methods and flux distance measures. In this
context, we perform numerical comparisons between OBR, FCR and iFCR (a ver-
sion of FCR which utilizes an iterative procedure to enhance the accuracy of FCR
numerical fluxes).

1 Introduction

The problem of transferring data between computational grids under specific con-
straints arises in the computational sciences in many contexts (see, e.g., Laursen and
Heinstein (2003); Bochev and Day (2008); Carey et al (2001)). Among the main ap-
plications, we focus on Arbitrary Lagrangian-Eulerian (ALE) methods (see Hirt et al
(1974)) as the primary motivation for this work.

ALE methods based on so-called continuous remap involve three separate phases:
(i) the Lagrangian update of the solution, including displacements of the computa-
tional grid; (ii) rezoning (repositioning) of the computational grid in order to reduce
grid distortion accrued during the Lagrangian motion; and (iii) conservative interpo-
lation (remap) of the Lagrangian solution onto the rezoned grid. Formally, it is pos-
sible to run ALE algorithms primarily in the Lagrangian mode with the occasional
rezone/remap taking place only when the grid becomes too distorted. However, an
alternative computational strategy that combines the best properties of Eulerian and
Lagrangian methods is to perform rezoning and remapping at every time step (from
which the terminology, continuous remapping).

An important property of the continuous rezone strategy is that individual grid
movements can be limited to small perturbations of the Lagrangian (old) mesh, and,
in turn, that conserved quantities are exchanged only between neighboring cells.
In this case, the remap step is localized to neighborhoods of old mesh cells and
eliminates expensive global search operations required to locate new cells in the old
mesh. Note also that, since remap is performed at every time step, the accuracy of
the continuous-rezone ALE strongly depends on the quality of the remap phase.

In what follows, we focus on the second-order conservative and bound-preserving
remap of a scalar conserved quantity between two close meshes with the same con-
nectivity. On each cell of the old mesh we are given the mean value of the primitive
variable that is an otherwise unknown positive scalar function (“density”). The con-
served variable is the product of this mean value and the cell volume (“mass”). The
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objective is to find an accurate approximation of the conserved variable on the new
mesh such that the density, approximated by the remapped cell mass divided by the
volume of the new cell, satisfies physically motivated bounds. In summary, we seek
solutions to the remap problem which possess the following properties:

P1. Conservation of total mass;
P2. Preservation of linearity;
P3. Preservation of local bounds for the primitive variable (namely, density).

Specifically, property (P1) is a fundamental requirement for remap, while property
(P2) is a statement of accuracy. It requires the remap algorithm to recover exact
masses in the new cells whenever the old masses correspond to a linear density
function. Property (P3) accounts for the fact that physically motivated bounds are
imposed on the primitive variable rather than on the conserved quantity. In the con-
tinuous rezone setting, every new cell is contained in the union of its Lagrangian
prototype and its neighbors. The minimum and maximum mean density values on
these Lagrangian cells provide natural lower and upper bounds for the mean density
value on the new cell.

Conservation of total mass (P1) is guaranteed if the remap is discretely stated in
mass flux form, as indicated by Margolin and Shashkov (2003).

Two strategies are commonly used in existing remappers to fulfill (P2) and (P3).
The first one employs slope-limited bound-preserving reconstruction of the prim-
itive variable, as presented in Dukowicz and Kodis (1987); Jones (1999); Miller
et al (1996). This first approach suffers from two main drawbacks: On the one hand,
many of the slope limiters in wide use today are not linearity-preserving on irregu-
lar grids, as shown in Berger et al (2005); on the other hand slope limiters usually
impose geometric restrictions on the mesh (e.g., cell alignment, logically structured
grids, etc.) The second strategy relaxes the bound-preserving requirement in the
reconstruction, and in turn the geometric conditions on the mesh. The approach
then proceeds with a mass re-distribution to satisfy (P3), see e.g., Kucharik et al
(2003); Margolin and Shashkov (2004); Loubere and Shashkov (2005); Loubere
et al (2006). Unfortunately, both bound-preserving reconstruction and mass “re-
pair” tend to obscure the sources of discretization errors and make the analysis of
accuracy more complex.

The alternative approach pursued here relies as well on the mass flux form of
remap to provide (P1), but achieves (P2) and (P3) without bound-preserving recon-
struction or mass post-processing. This is because the remap step is rephrased as a
global inequality-constrained optimization problem for mass fluxes between neigh-
boring cells. The objective is to minimize the discrepancy between these fluxes and
the given target mass fluxes, subject to constraints that enforce physically motivated
bounds on the primitive variable (density).

This strategy is expected to be more robust, flexible and asymptotically ac-
curate than the other two approaches mentioned for the following reasons. First,
optimization-based remap (OBR) finds a global optimal solution from a feasible set
defined by the local bounds, i.e. OBR always finds the best possible, with respect
to the target fluxes, remapped quantity that also satisfies these bounds. Therefore, it
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does not rely on local “worst-case” assumptions, which can reduce the accuracy, as
both bound-preserving reconstruction and mass redistribution.

Second, OBR can be easily adapted to different problems by choosing the most
appropriate target fluxes and discrepancy measures (norms) for these problems.

Third, OBR enforces the local bounds (P3) by a set of linear inequalities, which
are completely impervious to the shape of the cells in the mesh. Therefore, in princi-
ple, OBR can be applied to arbitrary grids, including grids comprising of polygons
or polyhedra.

It is important to mention at this point that Rider and Kothe (1997) and Berger
et al (2005) used constrained optimization in lieu of standard limiters to define a
bound-preserving reconstruction method on general cells. In that work the least-
squares gradient recovery on a cell is constrained by the local minimum and maxi-
mum of the data, i.e., the limiting remains based on local “worst-case” assumptions.
In contrast, we pose the entire remap problem as a globally constrained minimiza-
tion problem in which all bounds are considered simultaneously. This possibility
was first brought up in Liska et al (2010). Using ideas from flux-corrected transport
(FCT, see e.g. Kuzmin et al (2005)) these authors developed a flux-corrected remap
(FCR) algorithm. Then, they interpreted FCR as “a process of replacing a global
constrained optimization problem by series of local constrained optimization prob-
lems by considering the worst case scenario”. Liska et al (2010) did not examine in
detail this connection, and left open the question about the preservation of linearity
in FCR.

The material that follows is aimed at presenting the key components of the pro-
posed approach in detail, and to ultimately demonstrate that the global inequality-
constrained optimization strategy leads to robust, accurate and efficient remappers.
For this reason, we use the Euclidean norm to measure the flux discrepancy and de-
fine the target fluxes using density reconstruction that is exact for linear functions.
While not the only possible choices, the former leads to differentiable objectives
and the latter provides the preservation of linearity (P2).

Furthermore, we show that under some fairly weak requirements on mesh prox-
imity OBR satisfies (P2) on arbitrary unstructured grids in one, two and three di-
mensions, including grids with polygonal or polyhedral cells.

We also clarify the intuitive interpretation of FCR given in Liska et al (2010). We
show that the FCR solution coincides with the solution of a modified version of OBR
(M-OBR), which has the same objective but a simpler set of box constraints derived
from the OBR constraints by using a worst-case scenario. FCR is then viewed as an
approximate solution procedure for OBR, which seeks minimizers in a reduced fea-
sible set. Because M-OBR (FCR) has a smaller feasible set, preservation of linearity
may be lost and accuracy may suffer for some grid configurations.

Numerical studies confirm these conjectures, showing that for certain types of
grids FCR defaults to a first-order accurate scheme, while OBR achieves the the-
oretically best possible accuracy (second order) for a linearity-preserving scheme.
We also present examples of grids in one and two dimensions for which OBR is lin-
earity preserving when FCR is not, and grids for which OBR preserves (P3) when
FCR does not. These trends also extend to the case of iterated FCR (iFCR), a re-
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Fig. 1 Outline of the contents of the chapter and the main flow of the presentation.

cursive algorithm derived from standard FCR, in which the low-order remap fluxes
are sequentially updated using the most recent FCR monotone iterate. The iFCR
algorithm is clearly more expensive than the simple FCR algorithm, but provides a
more challenging benchmark for testing the accuracy of OBR.

Our analysis also explains why the FCR fluxes are required to be convex com-
binations of low and high-order fluxes, without appealing to analogies with FCT.
We show that the convexity requirement is introduced implicitly when the OBR
constraints are approximated by simpler box constraints. This restricts the optimal
solution of the global M-OBR problem to convex combinations of low-order and
high-order fluxes. Because FCR is a solution procedure for the M-OBR problem,
the convexity requirement becomes part of the “formula” for the optimal solution.

The chapter is organized as follows (see also Figure 1 for a roadmap of the pre-
sentation of the material). Notation and a formal statement of the remap problem is
presented in Section 2, and the new optimization-based formulation of remap is de-
veloped in Section 3. There we also establish sufficient conditions for the preserva-
tion of linearity in OBR. Connections between OBR, FCR, and iFCR are examined
in Section 4. Sections 5 and 6 discuss implementation details of OBR and FCR. Sec-
tion 7 presents three instructive computational examples, and Section 8 focuses on
numerical estimates of convergence rates and assessment of the OBR performance.
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2 The remap problem

2.1 Notation

In what follows Ω ⊂ Rd , d = 1,2,3, denotes an open bounded domain with a Lips-
chitz continuous boundary ∂Ω . Bold face lower case Roman symbols denote points
in the computational domain with x ∈Ω reserved for the independent variable. The
symbol Kh(Ω) stands for a conforming partition of Ω into K cells κi, i = 1, . . . ,K,
with volumes and barycenters given by

V (κi) =
∫

κi

dV and bi =

∫
κi

xdV

V (κi)
, (1)

respectively. S(Kh) is the set of all sides in the mesh Kh(Ω), and S(κi) is the sub-
set of S(Kh) associated with cell κi. A side can be oriented in two different ways,
which we refer to as positive and negative. We assume that each side σi ∈ S(Kh) is
endowed with a unique positive or negative orientation ωi. It is convenient to asso-
ciate ωi with the numeric values +1 and −1, for positively and negatively oriented
sides, respectively. We recall that conforming partitions of Ω consist of cells that
cover the domain without gaps or overlaps. The partition Kh(Ω) can be uniform or
nonuniform, and the cells are not required to have the same shape or to be convex.
For instance, in two dimensions Kh(Ω) can contain triangles, quadrilaterals and
convex and non-convex polygons. This makes our approach applicable to a wide
range of grids and methodologies. For example, we can think of a two-dimensional
AMR grid (see, e.g., Berger and Colella (1989)) as consisting of quadrilaterals and
(degenerate) polygons, while in three dimensions (see, e.g., Bell et al (1994)) such
grids will contain cubes and polyhedra.

We assume that Ω is endowed with two different grid partitions Kh(Ω) and
K̃h(Ω) having the same connectivity. In the context of ALE methods we refer to
Kh(Ω) as the old or Lagrangian grid and K̃h(Ω) as the new or rezoned1 grid. Quan-
tities defined on the new grid will have the tilde accent, e.g. f̃ , whereas the quanti-
ties on Kh(Ω) will have no accent. The cells on the new grid are denoted by κ̃i, with
barycenters b̃i, i = 1, . . . ,K. Because Kh(Ω) and K̃h(Ω) have the same connectivity,
it is convenient to assume that the new cells are numbered in the same order as the
old cells. Therefore, the Lagrangian prototype of the rezoned cell κ̃i is the cell κi.

The neighborhood N(κi) of κi comprises of the cell κi itself and all its neighbors,
i.e. those cells in Kh(Ω) that share a vertex (in 1D), vertex or edge (in 2D) and ver-
tex, edge or face (in 3D) with κi. The remap problem is stated under the assumption
that the rezoned grid satisfies the locality condition

κ̃i ⊂ N(κi), for all i = 1, . . . ,K , (2)

1 Typically, in a continuous rezone ALE the rezoned grid is close to the Lagrangian but has better
geometric quality.
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that is, each rezoned cell κ̃i is contained in N(κi), the neighborhood of its La-
grangian prototype. Here the relation κ̃i ⊂ N(κi) is interpreted geometrically (in
contrast to its set-relational definition).2 In the context of ALE methods, assump-
tion (2) corresponds to using the continuous rezone strategy. Finally, I denotes the
operator that returns the index of a cell, i.e. I (κi) = I (κ̃i) = i. The extension of
this operator to sets of cells is natural, e.g.

I (N(κi)) = {I (κi) |κi ∈ N(κi)}

is the set of all indices of the cells in N(κi).
For completeness, we review the specialization of some notation to one-dimensional

domains Ω = [a,b] where a < b are real numbers. In this case Kh(Ω) is defined by
a set of K + 1 points a = x0 < x1 < .. . < xK−1 < xK = b, the Lagrangian cells are
the intervals κi = [xi−1,xi] and their volumes are V (κi) = hi = xi− xi−1. The new
grid K̃h(Ω) comprises of rezoned cells κ̃i = [x̃i−1, x̃i] such that a = x̃0 < x̃1 < .. . <
x̃K−1 < x̃K = b. In one dimension, (2) assumes a particularly simple form:

κ̃i ⊂ (κi−1∪κi∪κi+1) for i = 2, . . . ,K−1,

κ̃1 ⊂ (κ1∪κ2) and κ̃K ⊂ (κK−1∪κK) ,

or
κ̃i ⊂ [xi−2,xi+1] for i = 2, . . . ,K−1,

κ̃1 ⊂ [a,x2] and κ̃K ⊂ [xK−2,b] .

An equivalent form of the locality condition is given by

xi−1 ≤ x̃i ≤ xi+1 , i = 1, . . . ,K−1 . (3)

Material in this chapter also requires some notation for Euclidean spaces Rn.
We use Roman and Greek symbols with an arrow accent, and bold face Roman
capitals for vectors and matrices, respectively, e.g., ~c ∈ Rn, ~F ∈ Rn, ~λ ∈ Rn, and
A ∈ Rn×m. The superscript (·)T indicates vector and matrix transposition. The Eu-
clidean inner product, 〈·, ·〉 : RN → R, is 〈~a,~b〉 = ~aT~b, and the Euclidian norm
‖~a‖2

2 = 〈~a,~a〉 =~aT~a. We use the Euclidean space notation to state algebraic forms
of the optimization problems and for various coefficient vectors.

2 In this chapter, we use the set-relational definitions and the corresponding geometric interpre-
tations of ⊂, ⊆, ∪, ∩, \ and ∈ interchangeably. Their meaning will be clear from the context. In
particular, relations between entities defined on K̃h(Ω) and those defined on Kh(Ω) only make
sense when interpreted geometrically relative to the common domain Ω .
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2.2 Statement of the remap problem

We recall the formal statement of mass-density remap following Margolin and
Shashkov (2003); Liska et al (2010). We assume that there is a positive function
ρ(x)> 0, referred to as density, that is defined on Ω and whose values on the bound-
ary ∂Ω are known. The only information given about ρ(x) in the interior of Ω is its
mean value on the old cells:

ρi =

∫
κi

ρ(x)dV

V (κi)
.

Equivalently, we can write

ρi =
mi

V (κi)
or mi = ρiV (κi) (4)

where
mi =

∫
κi

ρ(x)dV

is the (old) cell mass. Here we have implicitly assumed that the initial distribution
of ρ(x) is known exactly, and that the previous integral represents the exact mass
associated with cell i. The total mass is

M =
∫

Ω

ρ(x)dV =
K

∑
i=1

∫
κi

ρ(x)dV =
K

∑
i=1

mi =
K

∑
i=1

ρiV (κi) .

For further reference we note that the mean density on every Lagrangian cell κi
trivially satisfies the bounds

ρ
min
i ≤ ρi ≤ ρ

max
i , (5)

where

ρ
min
i =


min

j∈I (N(κi))
{ρ j} if κi∩∂Ω = /0

min
{

min
j∈I (N(κi))

{ρ j}, min
x∈N(κi)∩∂Ω

ρ(x)
}

if κi∩∂Ω 6= /0
(6)

and

ρ
max
i =


max

j∈I (N(κi))
{ρ j} if κi∩∂Ω = /0

max
{

max
j∈I (N(κi))

{ρ j}, max
x∈N(κi)∩∂Ω

ρ(x)
}

if κi∩∂Ω 6= /0 .
(7)
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In words, for cells that do not intersect the boundary ∂Ω , the values of ρmin
i and

ρmax
i give the smallest and the largest mean densities in the neighborhood of κi,

respectively. For cells adjacent to the boundary, ρmin
i is the smaller of the smallest

mean cell density in the cell neighborhood and the smallest density on the boundary
segment N(κi)∩∂Ω ; ρmax

i is defined analogously. Bounds for the cell masses follow
from (4) and (5):

ρ
min
i V (κi) = mmin

i ≤ mi ≤ mmax
i = ρ

max
i V (κi) ∀κi ∈ Kh(Ω) . (8)

A formal statement of the mass-density remap problem is as follows.

Definition 2.1 (Remapping of mass-density) Given mean density values ρi on the
old grid cells κi, find accurate approximations m̃i for the masses of the new cells κ̃i,

m̃i ≈ m̃ex
i =

∫
κ̃i

ρ(x)dV ; i = 1, . . . ,K , (9)

such that the following conditions hold:

R1. The total mass is conserved:

K

∑
i=1

m̃i =
K

∑
i=1

mi = M .

R2. If the exact density ρ(x) is a linear function on all of Ω , then the remapped
masses are exact:

m̃i = m̃ex
i =

∫
κ̃i

ρ(x)dV ; i = 1, . . . ,K . (10)

R3. Given approximate masses m̃i on the new cells, define ρ̃i = m̃i/V (κ̃i). Let
ρmin

i and ρmax
i be the quantities defined in (6)–(7). Then the bounds

ρ
min
i ≤ ρ̃i ≤ ρ

max
i

and
ρ

min
i V (κ̃i) = m̃min

i ≤ m̃i ≤ m̃max
i = ρ

max
i V (κ̃i) (11)

hold on every new cell κ̃i. �

Requirements (R1–R3) in Definition 2.1 are derived from the desired remap prop-
erties (P1–P3). (R1) and (R2) are formal statements of (P1) and (P2), whereas (R3)
follows from the bounds in (5) and (8), and the locality assumption (2). Therefore,
the last requirement is specific to a continuous rezone strategy and may have to be
modified for other settings. Such a modification is beyond the scope of this chapter.
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3 A constrained optimization formulation of the remap problem

In this section we develop an inequality-constrained optimization formulation of
remap that satisfies requirements (R1–R3). The conservation of total mass (R1) is
the simplest one. For any two grids that satisfy the locality assumption (2), the
new cells have the following representation (cf. Margolin and Shashkov (2003,
Eq.(3.9))):

κ̃i =

(
κi ∪

⋃
j∈I (N(κi))

κ̃i∩κ j

)
\
( ⋃

j∈I (N(κi))

κi∩ κ̃ j

)
, (12)

Using (12) we can express the exact masses of the new cells in flux form

m̃ex
i = mi + ∑

j∈I (N(κi))

Fex
i j , (13)

where the (exact) fluxes are (cf. Margolin and Shashkov (2003, Eq.(3.12)))

Fex
i j =

∫
κ̃i∩κ j

ρ(x)dV −
∫

κi∩κ̃ j

ρ(x)dV . (14)

Formula (14) implies that the exact mass fluxes are antisymmetric: Fex
i j = −Fex

ji .
Assume that Fi j are approximate mass fluxes that are also antisymmetric

Fi j =−Fji . (15)

Using these fluxes in (16) yields a formula for the approximation of the new cell
masses

m̃i = mi + ∑
j∈I (N(κi))

Fi j , (16)

which preserves the total mass, i.e. satisfies (R1) in Definition 2.1. To satisfy (R2)
we introduce the notion of high-order target mass fluxes

FH
i j =

∫
κ̃i∩κ j

ρ
H
j (x)dV −

∫
κi∩κ̃ j

ρ
H
i (x)dV , (17)

where ρH
i (x) is a density reconstruction on κi that is exact for linear functions. If

ρ(x) is linear, then FH
i j = Fex

i j , i.e., the target fluxes coincide3 with the exact fluxes
for linear functions. In this case, using (16) with the target fluxes gives the exact
new cell masses, i.e., (R2) holds. However, if ρ(x) is not linear, using FH

i j in (16)
will likely lead to violation of (R3), especially when ρ(x) is not smooth. We then
constrain the set of approximate fluxes Fi j introduced in (15)–(16) by the global
system of linear inequalities

3 In practice, this also means that the integrals in (17) should be approximated by quadratures that
are exact for linear functions.
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m̃min
i ≤ mi + ∑

j∈I (N(κi))

Fi j ≤ m̃max
i ; i = 1, . . . ,K , (18)

obtained by substituting the approximate mass in (11) with the flux form formula
(16). By construction, any Fi j that solves (18) produces new cell masses that satisfy
(R3). To summarize,

• using the flux form (16) guarantees the conservation of total mass (R1);
• using (16) with the target fluxes FH

i j ensures preservation of linearity (R2);
• using (16) with fluxes Fi j which solve (18) secures the preservation of local

bounds (R3).

We use optimization to reconcile the last two properties. Let us regard the fluxes Fi j
as the unknowns, the inequalities (18) as the constraints, and the minimization of
the Euclidean distance4 between the target and the unknown fluxes as the objective.
The resulting constrained optimization problem reads

min
Fi j

K

∑
i=1

∑
j∈I (N(κi))

(Fi j−FH
i j )

2 subject to

Fi j =−Fji i = 1, . . . ,K, j ∈I (N(κi))

m̃min
i ≤ mi + ∑

j∈I (N(κi))

Fi j ≤ m̃max
i i = 1, . . . ,K .

(19)

Explicit enforcement of the antisymmetry constraint by using only the fluxes Fpq
for which p < q simplifies the optimization problem:

min
Fi j

K

∑
i=1

∑
j∈I (N(κi))

i< j

(Fi j−FH
i j )

2 subject to

m̃min
i −mi ≤ ∑

j∈I (N(κi))
i< j

Fi j− ∑
j∈I (N(κi))

i> j

Fji ≤ m̃max
i −mi i = 1, . . . ,K ,

(20)

where we have also moved mi to the left and right of the chain of inequalities. Any
feasible point of (20) satisfies (R1) and (R3) by construction.

We proceed to show that (20) has a non-empty feasible set, i.e., there is always a
non-trivial optimal solution, and that the optimal solution preserves linear densities.

Theorem 1. Assume that Kh(Ω) and K̃h(Ω) are such that the locality condition
(2) holds. For any given set of masses mi and associated densities ρi = mi/V (κi) on
Kh(Ω) there exist antisymmetric fluxes {Fi j} which satisfy the inequality constraints
in (20), resp (19).

Proof. We need to show that there are antisymmetric fluxes Fi j such that

4 The Euclidean distance is used for simplicity. The objective can be defined using any valid dis-
tance function (or, equivalently, norm).
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ρ
min
i V (κ̃i)≤ ρiV (κi)+ ∑

κ j∈Ni

Fi j ≤ ρ
max
i V (κ̃i)

Fix a cell index 1≤ i≤ K, and choose ρ̂ j, for κ j ∈ N j according to

ρ
min
i ≤ ρ̂ j ≤ ρ

max
i for j 6= i and ρ̂i = ρi . (21)

The representation formula (12) motivates the following definition:

Fi j = ρ̂ jV (κ̃i∩κ j)− ρ̂iV (κi∩ κ̃ j) . (22)

Clearly, Fi j =−Fji. Using the fluxes (22)

ρiV (κi)+ ∑
κ j∈Ni

Fi j = ρi

[
V (κi)−∑

j 6=i
V (κi∩ κ̃ j)

]
+∑

j 6=i
ρ̂ jV (κ̃i∩κ j)

= ρiV (κ̃i∩κi)+∑
j 6=i

ρ̂ jV (κi∩ κ̃ j) = ∑
κ j∈Ni

ρ̂ jV (κ̃i∩κ j) .

From κ̃i = ∪κ j∈Ni(κ̃i∩κ j) and the bounds in (21) it follows that

∑
κ j∈Ni

ρ̂ jV (κ̃i∩κ j)≤ ρ
max
i ∑

κ j∈Ni

V (κ̃i∩κ j) = ρ
max
i V (κ̃i) ;

∑
κ j∈Ni

ρ̂ jV (κ̃i∩κ j)≥ ρ
min
i ∑

κ j∈Ni

V (κ̃i∩κ j) = ρ
min
i V (κ̃i) ,

which proves the theorem.

Preservation of linearity (R2) requires the target fluxes FH
i j to be in the feasible

set of (20) whenever ρ(x) is linear, i.e.,

m̃min
i −mi ≤ ∑

j∈I (N(κi))
i< j

FH
i j − ∑

j∈I (N(κi))
i> j

FH
ji ≤ m̃max

i −mi i = 1, . . . ,K . (23)

The proof of this fact requires a simple technical result.

Lemma 3.1 Let n > 0 be an integer and let~c ∈Rn be an arbitrary fixed vector. For
any closed and bounded set of points P⊂ Rn

min
x∈P

(~cTx) = min
x∈H (P)

(~cTx) and max
x∈P

(~cTx) = max
x∈H (P)

(~cTx) , (24)

where H (P) is the convex hull of P.

Proof. The real-valued function ~cTx is continuous on Rn. The set P is closed and
bounded, which implies that ~cTx attains its minimum and maximum over P. Since
the convex hull of a closed and bounded set is closed and bounded, see Rockafellar
(1970, Theorem 17.2), the same is true for H (P).5

5 This guarantees that taking min and max in (24) is well-defined. Otherwise, the correct statement
of this result should involve inf and sup.
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The function ~cTx is linear, hence both convex and concave. The claim of the
lemma follows from a standard result on the supremum of convex (infimum of con-
cave) functions, see e.g. Rockafellar (1970, Theorem 32.2).

The following theorem provides sufficient conditions on mesh movement for (23)
to hold.

Theorem 2. Assume the locality condition (2) and suppose that the exact density
ρ(x) is linear in all of Ω . Let Bi denote the set of barycenters of the Lagrangian
cells in N(κi),

Bi = {b j | j ∈I (N(κi))},

and let b̃i be the barycenter of the rezoned cell κ̃i. Sufficient conditions for the target
fluxes to be in the feasible set of (20), that is for (23) to hold, are

b̃i ∈H (Bi) if κi∩∂Ω = /0, (25)

b̃i ∈H (Bi∪ (N(κi)∩∂Ω)) if κi∩∂Ω 6= /0, (26)

where H (·) denotes the convex hull.

Proof. Because ρ(x) is linear and the density reconstruction is exact for linear func-
tions it follows that the remapped mass equals the exact mass on every rezoned cell
κ̃i:

m̃i = mi + ∑
j∈I (N(κi))

i< j

FH
i j − ∑

j∈I (N(κi))
i> j

FH
ji = mi + ∑

j∈I (N(κi))
i< j

Fex
i j − ∑

j∈I (N(κi))
i> j

Fex
ji = m̃ex

i .

Therefore, proving that (23) holds reduces to showing that

m̃min
i ≤ m̃ex

i ≤ m̃max
i for all i = 1, . . . ,K . (27)

Recalling ρ(x) = c0 +~cTx and using the barycenter formula (1) yields

m̃ex
i =

∫
κ̃i

(c0 +~cTx)dV = c0V (κ̃i)+~cT
[∫

κ̃i

xdV
]

= c0V (κ̃i)+~cT
[∫

κ̃i
xdV

V (κ̃i)

]
V (κ̃i) = (c0 +~cT b̃i)V (κ̃i) .

We consider two cases, κi∩∂Ω = /0 and κi∩∂Ω 6= /0.

Case 1: Suppose κi∩∂Ω = /0

Using
ρ

min
i = min

j∈I (N(κi))
{ρ j} and ρ

max
i = max

j∈I (N(κi))
{ρ j} ,

the barycenter formula yields
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m̃min
i = min

j∈I (N(κi))

[∫
κ j
(c0 +~cTx)dV

V (κ j)

]
V (κ̃i) = min

b j∈Bi
(c0 +~cTb j)V (κ̃i)

for the lower bound and

m̃max
i = max

j∈I (N(κi))

[∫
κ j
(c0 +~cTx)dV

V (κ j)

]
V (κ̃i) = max

b j∈Bi
(c0 +~cTb j)V (κ̃i)

for the upper bound in (27). From Lemma 3.1 it follows that

min
b j∈Bi

(c0 +~cTb j) = min
x∈H (Bi)

(c0 +~cTx) (28)

and
max
b j∈Bi

(c0 +~cTb j) = max
x∈H (Bi)

(c0 +~cTx) . (29)

Consequently, whenever κi∩∂Ω = /0, (27) is equivalent to

min
x∈H (Bi)

(c0 +~cTx)≤ (c0 +~cTb̃i)≤ max
x∈H (Bi)

(c0 +~cTx) . (30)

A sufficient condition for (30) is given by (25).

Case 2: Suppose κi∩∂Ω 6= /0

We have

ρ
min
i = min

{
min

j∈I (N(κi))
{ρ j}, min

x∈N(κi)∩∂Ω

(c0 +~cTx)
}

and

ρ
max
i = max

{
max

j∈I (N(κi))
{ρ j}, max

x∈N(κi)∩∂Ω

(c0 +~cTx)
}
.

Using again the barycenter formula, we obtain

ρ
min
i = min

{
min
x∈Bi

(c0 +~cTx), min
x∈N(κi)∩∂Ω

(c0 +~cTx)
}

and

ρ
max
i = max

{
max
x∈Bi

(c0 +~cTx), max
x∈N(κi)∩∂Ω

(c0 +~cTx)
}
.

In other words,
m̃min

i = min
x∈Bi∪(N(κi)∩∂Ω)

(c0 +~cTx)V (κ̃i)

and
m̃max

i = max
x∈Bi∪(N(κi)∩∂Ω)

(c0 +~cTx)V (κ̃i) .
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Fig. 2 The level sets of ρ(x) = c0 +~cTx are perpendicular to ∇ρ(x) =~c and the extrema of ρ(x)
are achieved along the parallel lines~c⊥L and~c⊥U shown in the plot. Therefore, inequality (30) holds
for all points between the two lines, while (25) requires b̃i to remain in the convex hull H (Bi) (the
gray hexagon).

Treating Bi ∪ (N(κi)∩ ∂Ω) as a set of points in Rn, another application of Lemma
3.1 gives

m̃min
i = min

x∈H (Bi∪(N(κi)∩∂Ω))
(c0 +~cTx)V (κ̃i)

and
m̃max

i = max
x∈H (Bi∪(N(κi)∩∂Ω))

(c0 +~cTx)V (κ̃i) .

Therefore, whenever κi ∩ ∂Ω 6= /0, a sufficient condition for (27) is given by (26).
This concludes the proof.

Remark 3.1 The sufficient condition (26) can be replaced by more restrictive con-
ditions of the type

b̃i ∈H (Bi∪Si) if κi∩∂Ω 6= /0 ,

where Si ⊆ (N(κi)∩∂Ω), i.e. Si is any (for example, finite) set of points taken from
the boundary segment N(κi)∩∂Ω .

Remark 3.2 The sufficient conditions (25) and (26) are not in any way dependent
on the cell shape. As a result, the statement of Theorem 2 applies to general grids,
including grids which contain, e.g., non-convex polytopes. This allows to use OBR
for a wider range of mesh partitions of Ω .

Simple examples showing mesh motions that comply with or violate condition
(25) are shown in Figure 3. It is worth pointing out that a similar but more re-
strictive condition κ̃i ⊂H (Bi) is necessary and sufficient for linear functions to
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(a) (b) (c)

Fig. 3 Examples of mesh motions which satisfy and violate, respectively, the sufficient condition
for the preservation of linearity in Theorem 2. (a) the neighborhood N(κi) consisting of 9 square
cells, the Lagrangian prototype of κ̃i with vertices (p,q,r,s), its barycenter (the diamond), the set
Bi (the solid dots), and its convex hull H (Bi) (the dotted square); (b) an admissible rezoned grid
for which b̃i ∈H (Bi); (c) an inadmissible rezoned grid for which b̃i /∈H (Bi). In (b) and (c) κ̃i
is the cell with vertices (p’,q’,r’,s’). All cells in (a)–(c) satisfy the locality condition (2). Note that
the rezoned cell in (b) violates κ̃i ⊂H (Bi) which is necessary and sufficient for Van Leer slope
limiting to recover linear functions as shown by Swartz (1999), but which is not required for the
OBR formulation.

be preserved under Van Leer slope limiting; see Swartz (1999). The center pane in
Figure 3 provides an example for which κ̃i * H (Bi) but b̃i ∈H (Bi), i.e. Van Leer
slope limiting does not preserve linear functions whereas OBR does.

4 OBR, modified-OBR (M-OBR), and connection with
flux-corrected remap (FCR)

In this section we establish connections between the global OBR problem (20) and
the FCR algorithm by Liska et al (2010). The FCR algorithm is formulated by defin-
ing the mass fluxes in (16) to be convex combinations of so-called low-order and
high-order fluxes; the low-order fluxes are assumed to satisfy the local bounds. We
will have more to say about this assumption later. The first step is to rewrite (20)
in terms of the same low-order and high-order fluxes as in FCR. The reformulation
of OBR amounts to a change of variables that leaves the solution of (20) intact but
places the OBR problem in a form that can be compared with FCR. The second step
approximates the constraints in OBR by a set of inequalities which are sufficient for
the original constraints to hold but have a simpler structure. This step gives rise to a
modified version of OBR, termed M-OBR, in which the original objective is mini-
mized over a subset of the original OBR feasible set. The final step entails showing
that the optimal solution of M-OBR coincides with the FCR solution.
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4.1 Reformulation of the optimization-based remap

The low-order fluxes in FCR are defined by the formula

FL
i j =

∫
κ̃i∩κ j

ρ
L
j (x)dV −

∫
κi∩κ̃ j

ρ
L
i (x)dV , (31)

using a piecewise constant reconstruction ρL
i (x) of the old mesh values ρi, i.e.

ρ
L
i (x) = ρi ∀x ∈ κi , i = 1, . . . ,K .

Using these fluxes in formula (16) gives a low-order approximation of the mass in
the rezoned cell κ̃i.

m̃L
i = mi + ∑

j∈I (N(κi))
i< j

FL
i j − ∑

j∈I (N(κi))
i> j

FL
ji . (32)

Because FL
i j are computed using exact cell intersections, the new masses satisfy the

local bounds, see Margolin and Shashkov (2003, Section 3)

m̃min
i ≤ m̃L

i ≤ m̃max
i . (33)

The high-order fluxes in the FCR are defined by the same formula (17) as our target
fluxes. Therefore we change the variables in (20) according to

Fi j = (1−ai j)FL
i j +ai jFH

i j = FL
i j +ai jdFi j , (34)

where dFi j = FH
i j −FL

i j . The coefficients ai j are the new variables for the optimiza-
tion problem. It easy to see that antisymmetry of the fluxes implies symmetry of
the new variables: ai j = a ji. However, the change of variables does not introduce
any additional constraints on ai j. As before, we enforce the symmetry constraint by
using only coefficients apq for which p < q.

Under the change of variables (34) the terms in the objective functional assume
the form

Fi j−FH
i j = FL

i j +ai jdFi j−FH
i j = (ai j−1)dFi j .

Using (32) and (34) we rewrite the constraints as follows:

m̃i = mi + ∑
j∈I (N(κi))

i< j

Fi j− ∑
j∈I (N(κi))

i> j

Fji

= mi + ∑
j∈I (N(κi))

i< j

(
FL

i j +ai jdFi j
)
− ∑

j∈I (N(κi))
i> j

(
FL

ji +a jidFji
)

=
(

mi + ∑
j∈I (N(κi))

i< j

FL
i j − ∑

j∈I (N(κi))
i> j

FL
ji

)
+ ∑

j∈I (N(κi))
i< j

ai jdFi j− ∑
j∈I (N(κi))

i> j

a jidFji

= m̃L
i + ∑

j∈I (N(κi))
i< j

ai jdFi j− ∑
j∈I (N(κi))

i> j

a jidFji .
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From (33) it follows that

Q̃min
i := m̃min

i − m̃L
i ≤ 0 and Q̃max

i := m̃max
i − m̃L

i ≥ 0 . (35)

We write the transformed constraints using these quantities as

Q̃min
i ≤ ∑

j∈I (N(κi))
i< j

ai jdFi j− ∑
j∈I (N(κi))

i> j

a jidFji ≤ Q̃max
i i = 1, . . . ,K . (36)

In summary, after changing variables according to (34), the OBR problem (20) as-
sumes the form

min
ai j

K

∑
i=1

∑
j∈I (N(κi))

i< j

(1−ai j)
2(dFi j)

2 subject to

Q̃min
i ≤ ∑

j∈I (N(κi))
i< j

ai jdFi j− ∑
j∈I (N(κi))

i> j

a jidFji ≤ Q̃max
i i = 1, . . . ,K .

(37)

Problems (20) and (37) are completely equivalent. For example, the global min-
imizer ai j = 1 of (37), sans constraints, corresponds to Fi j = FH

i j , which is the
global minimizer of (20), sans constraints. Note also that the choice ai j = 0 sat-
isfies the constraints, due to (35). The sufficient conditions in Theorem 2 guarantee
that ai j = 1 are in the feasible set of (37) when the exact density ρ(x) is a linear
function in all of Ω .

4.2 The M-OBR formulation

In this section we modify (37) to another inequality-constrained optimization prob-
lem, termed M-OBR, in which the same objective is minimized subject to a set of
simple box constraints. The box constraints are sufficient for the original inequality
constraints in (37) to hold and are derived by following the same reasoning as in
Liska et al (2010). To this end, we define the quantities

P−i =
dFi j≤0

∑
j∈I (N(κi))

i< j

dFi j−
dFji≥0

∑
j∈I (N(κi))

i> j

dFji ≤ 0; P+
i =

dFi j≥0

∑
j∈I (N(κi))

i< j

dFi j−
dFji≤0

∑
j∈I (N(κi))

i> j

dFji ≥ 0;

(38)

D−i =


Q̃min

i

P−i
if P−i < 0

0 if P−i = 0

and D+
i =


Q̃max

i

P+
i

if P+
i > 0

0 if P+
i = 0

. (39)

Using these quantities we reduce the constraints in (37) to a set of box constraints
in three steps.
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In the first step we replace the upper and lower bounds in the constraints of (37)
by D−i P−i and D+

i P+
i , respectively:

D−i P−i ≤ ∑
j∈I (N(κi))

i< j

ai jdFi j− ∑
j∈I (N(κi))

i> j

a jidFji ≤ D+
i P+

i i = 1, . . . ,K . (40)

In the second step we split (40) into two parts, according to the signs of the flux
differentials:

(a) D−i P−i ≤
dFi j≤0

∑
j∈I (N(κi))

i< j

ai jdFi j−
dFji≥0

∑
j∈I (N(κi))

i> j

a jidFji ≤ 0

(b) 0≤
dFi j≥0

∑
j∈I (N(κi))

i< j

ai jdFi j−
dFji≤0

∑
j∈I (N(κi))

i> j

a jidFji ≤ D+
i P+

i

i = 1, . . . ,K . (41)

Finally, using definition (38), we reduce (41) to a set of box constraints by applying
the upper and the lower bounds componentwise:

(a)

{
D−i dFi j ≤ ai jdFi j ≤ 0 for i < j, dFi j ≤ 0

D−i dFji ≥ a jidFji ≥ 0 for i > j, dFji ≥ 0

(b)

{
0≤ ai jdFi j ≤ D+

i dFi j for i < j, dFi j ≥ 0

0≥ a jidFji ≥ D+
i dFji for i > j, dFji ≤ 0

i = 1, . . . ,K

j ∈I (N(κi))
. (42)

Using the box constraints (42) in lieu of the original set of inequalities in (37) yields
the modified OBR problem (M-OBR)

min
ai j

K

∑
i=1

∑
j∈I (N(κi))

i< j

(1−ai j)
2(dFi j)

2 subject to

(a)

{
D−i dFi j ≤ ai jdFi j ≤ 0 for i < j,dFi j ≤ 0

D−i dFji ≥ a jidFji ≥ 0 for i > j,dFji ≥ 0

(b)

{
0≤ ai jdFi j ≤ D+

i dFi j for i < j,dFi j ≥ 0

0≥ a jidFji ≥ D+
i dFji for i > j,dFji ≤ 0

i = 1, . . . ,K

j ∈I (N(κi))
.

(43)

We are now ready to study the connections of the global M-OBR formulation (43)
with the OBR problem (37). The first result shows that (43) always has a solution.

Proposition 4.1 The feasible set of the modified OBR problem (43) is non-empty.
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Proof. The inequalities in (43) are always satisfied for ai j = 0 because D−i ≥ 0 and
D+

i ≥ 0 for all i = 1, . . . ,K. Therefore, the feasible set of (43) always contains at
least one point.

We note that ai j = 0 results in Fi j = FL
i j , which corresponds to a low-order mass

remap or, using an advection parlance, to a “donor-cell” solution of the remap prob-
lem. Thus, at the least, the M-OBR problem admits the same solution as a conven-
tional low-order local remapper.

The following theorem examines the relationship between M-OBR and OBR.

Theorem 3. The feasible set of the M-OBR formulation (43) is a subset of the fea-
sible set of the OBR formulation (37).

Proof. The feasible sets of the OBR and M-OBR problems are given by

UO = {ai j ∈ R | (36) hold for i = 1, . . . ,K and j ∈I (N(κi))} ,

and
UM = {ai j ∈ R | (42) hold for i = 1, . . . ,K and j ∈I (N(κi))} ,

respectively. To show that UM ⊆UO define the intermediate sets

UA = {ai j ∈ R | (40) hold for i = 1, . . . ,K and j ∈I (N(κi))} ,

and
UB = {ai j ∈ R | (41) hold for i = 1, . . . ,K and j ∈I (N(κi))} ,

corresponding to the first and the second stages in the transformation of the OBR
constraints to the box constraints of M-OBR.

To prove the theorem we will show that

UM ⊆UB ⊆UA ⊆UO .

Step 1: UM ⊆UB.

Let {ai j} ∈UM . Summing up the inequalities in (42) yields

dFi j≤0

∑
j∈I (N(κi))

i< j

D−i dFi j−
dFji≥0

∑
j∈I (N(κi))

i> j

D−i dFji ≤
dFi j≤0

∑
j∈I (N(κi))

i< j

ai jdFi j−
dFji≥0

∑
j∈I (N(κi))

i> j

a jidFji ≤ 0 ,

0≤
dFi j≤0

∑
j∈I (N(κi))

i< j

ai jdFi j−
dFji≥0

∑
j∈I (N(κi))

i> j

a jidFji ≤
dFi j≤0

∑
j∈I (N(κi))

i< j

D+
i dFi j−

dFji≥0

∑
j∈I (N(κi))

i> j

D+
i dFji .

From (38) we see that the left hand side in the first inequality equals D−i P−i and the
right hand side in the second inequality is D+

i P+
i . Therefore, inequalities (41) hold

for {ai j}, i.e. {ai j} ∈UB. This proves the inclusion UM ⊆UB.
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Step 2: UB ⊆UA.

Assume that {ai j} ∈UB. Summing up inequalities (a) and (b) in (41) gives

D−i P−i ≤
dFi j≤0

∑
j∈I (N(κi))

i< j

ai jdFi j−
dFji≥0

∑
j∈I (N(κi))

i> j

a jidFji +
dFi j≥0

∑
j∈I (N(κi))

i< j

ai jdFi j−
dFji≤0

∑
j∈I (N(κi))

i> j

a jidFji ≤ D+
i P+

i

from where it follows that (40) hold for {ai j}, i.e. {ai j} ∈ UA. This proves the
inclusion UB ⊆UA.

Step 3: UB ⊆UO.

Finally, let {ai j} ∈UA. Note that

Q̃min
i ≤ D−i P−i and D+

i P+
i ≤ Q̃max

i .

Therefore, inequalities (36) hold for {ai j}, i.e. {ai j} ∈UO. This proves the inclusion
UA ⊆UO.

Remark 4.1 Since the M-OBR feasible set is contained in the OBR feasible set due
to Theorem 3, it follows that the OBR solution is always at least as accurate as the
M-OBR solution.

4.3 FCR and M-OBR: Two equivalent algorithms

In this section we show that the M-OBR formulation is equivalent to the FCR al-
gorithm in Liska et al (2010). For convenience, below we summarize the FCR for-
mulation for the mass-density remap. Full details can be found in Liska et al (2010,
Section 3).

The original motivation for FCR is to replace a global optimization problem such
as OBR by a series of local problems. To this end, FCR restricts the mass fluxes in
(16) to convex combinations of the low-order and the high-order target fluxes, i.e.

Fi j = (1−ai j)FL
i j +ai jFH

i j = FL
i j +ai jdFi j , (44)

where ai j = a ji and 0 ≤ ai j ≤ 1. The convexity assumption is motivated by analo-
gies with the FCT approach of Kuzmin et al (2005) for advection. Except for this
requirement, formula (44) is identical to the change of variables in (34). In the FCR
algorithm the approximate mass fluxes in (44) are computed using the following
values for the unknown coefficients:
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ai j =

min{D+
i ,D

−
j ,1} if dFi j > 0

min{D−i ,D
+
j ,1} if dFi j < 0

1≤ i, j ≤ K
and i < j

. (45)

For completeness, one can set ai j = 1 whenever dFi j = 0. In Liska et al (2010) it is
shown that (45) is sufficient for the local mass-density bounds in (36) to hold.

We proceed to show that the solution of the global M-OBR problem is also given
by (45). This fact establishes the equivalence of FCR and M-OBR and is a direct
consequence of the following theorem.

Theorem 4. The M-OBR formulation (43) is equivalent to the following set of inde-
pendent, single-variable, constrained optimization problems: for 1 ≤ i, j ≤ K and
i < j solve 

min
ai j

(1−ai j)
2(dFi j)

2 subject to

0≤ ai j ≤

min{D+
i ,D

−
j } if dFi j > 0

min{D−i ,D
+
j } if dFi j < 0 .

(46)

Proof. A flux differential dFi j, i < j, can be negative, zero or positive. If dFi j = 0,
we denote the variable ai j as free, because the box constraint in (42) holds for any
value of ai j. Note that the terms associated with free variables do not contribute to
the objective, because (1− ai j)

2(dFi j)
2 = 0. It follows that all free variables can

be eliminated6 from the optimization problem. Thus, without loss of generality we
may assume that dFi j 6= 0.

It is easy to see that whenever dFi j 6= 0, the associated variable ai j enters in
exactly one constraint of type (a) and one constraint of type (b). Solving the in-
equalities for ai j gives

0≤ ai j ≤ D+
i and 0≤ ai j ≤ D−j

for i < j and dFi j > 0, and

0≤ ai j ≤ D−i and 0≤ ai j ≤ D+
j

for i < j and dFi j < 0. Succinctly,

0≤ ai j ≤

min{D+
i ,D

−
j } if dFi j > 0

min{D−i ,D
+
j } if dFi j < 0

1≤ i, j ≤ K
and i < j

is a new set of box constraints that is completely equivalent to (43). Because each
of the terms in the objective functional depends on only one variable, it follows that
(43) decouples into the set of independent, single-variable, constrained optimization
problems given in (46).

The equivalence of FCR and M-OBR easily follows.

6 For a complete match with FCR we can set all free variables to 1.
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Corollary 4.2 The solution {ai j} of the M-OBR problem (43) is given by the FCR
formula (45).

Proof. To find the solution of the M-OBR problem we set all free variables to 1. The
rest of the variables are computed by solving the decoupled optimization problems
in (46). For a given pair of indices i < j let Di j ≥ 0 denote the upper bound in the
constraint of the optimization problem for the variable ai j. The cost functional (1−
ai j)

2(dFi j)
2 in this problem represents a parabola with the vertex at (1,0). Therefore,

the constrained minimum is achieved at the smaller of the two values ai j = 1 or
ai j =Di j. It follows that whenever dFi j 6= 0, the solution of the optimization problem
in (46) is given by formula (45).

4.4 iFCR: An iterative extension of FCR

For the purpose of numerical comparisons, we introduce a variation of the stan-
dard FCR algorithm, called iterated FCR (iFCR), originally proposed by Schär and
Smolarkiewicz (1996). The key idea of iFCR is that, by definition, FCR fluxes en-
sure monotonicity of the solution, and can be reused as base low-order fluxes for
an additional FCR flux computation. This process can be repeated ad infinitum. The
advantage of iFCR over FCR is mainly in accuracy, at the price of increased com-
putational cost, as the FCR flux computation has to be repeated at each iteration of
the method. iFCR represents a more challenging benchmark in the analysis of per-
formance of the OBR approach, and, of course - in the limit for a large number of
iterations - may easily surpass in cost the OBR algorithm itself. The iFCR approach
is described in Table 1.

Table 1 Outline of the iFCR algorithm.

Initialize solution field with initial conditions.

Predictor: Compute FCR fluxes Fi j using (44) and (45).

Define F(0)
i j = Fi j and FL;(0)

i j = FL
i j .

For k = 0, . . . ,kmax (iFCR loop begins)

Replace FL;(k+1)
i j = F(k)

i j .

Corrector: Compute F(k+1)
i j using (44) and (45).

End (iFCR loop ends)
Exit
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5 Algorithms I: Exact cell intersection versus swept region flux
computations

Until now all our considerations were based on the exact cell intersection formula
(12). This means that in order to implement the corresponding OBR and FCR algo-
rithms we would have to find the intersections between the cells on the old and new
meshes, which is computationally expensive. Instead, we implement the OBR and
FCR algorithms using swept regions as in Margolin and Shashkov (2003, Section
4). These are the regions swept by the movement of the sides of the old cells. As
a result, the swept regions are completely determined by the coordinates of the old
and new nodes and do not require the computation of cell intersections.

Recall that S(κi) is the set of all sides in cell κi. Each side σ j has unique orien-
tation ω j = +1, or − 1, which induces orientation on the associated swept region
Σ j. The idea of the swept region approximation is to allow mass exchanges only be-
tween cells that share a side. In this case, the new cell masses can be approximated
by the formula

m̃i = mi + ∑
j∈I (S(κi))

ω jFj , (47)

where summation is over the sides of the cell and Fj are mass fluxes corresponding
to the (signed) swept regions Σ j associated with side σ j.

Our implementation of OBR and FCR uses (47) in lieu of the cell-intersection
formula (16). Let Σ j denote the swept region associated with side σ j of cell κi. We
define the target (high-order) fluxes as7

FH
j =

∫
Σ j

ρ
H
j (x)dV , (48)

where ρH
j is a density reconstruction that is exact for linear functions. One can show

that using formula (47) with the fluxes defined in (48) gives the exact cell masses
whenever the density is linear (see Margolin and Shashkov (2003)). This means
that the preservation of linearity in OBR remains in full force when the method is
implemented using swept regions, instead of exact cell intersections.

The situation with FCR is somewhat more complicated. In addition to the high-
order fluxes (48) this method also uses the low order fluxes

FL
j =

∫
Σ j

ρ
L
j (x)dV . (49)

7 Because side nodes can move in different directions swept regions are not simple extrusions of
the sides, which can complicate the computation of integrals. Using Green’s theorem, integrals of
polynomials over swept regions can be replaced by integrals of higher-degree polynomials over the
(lower-dimensional) boundaries of these regions, see Margolin and Shashkov (2003); Dukowicz
and Kodis (1987). This provides an efficient way to compute the fluxes, regardless of the shape of
the swept regions.
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It turns out that when the low-order approximations of the new cell masses are
computed using (47) and (49), instead of (16) and (31), there is no guarantee that
these masses will satisfy the bounds (33), see Margolin and Shashkov (2003). Ad-
ditional restrictions on the mesh movement are required to ensure that these bounds
hold. A sufficient condition for (33) is that the area of the old cell κi is greater than
the sum of the absolute values of all negatively signed swept regions (see Margolin
and Shashkov (2003, p.279)).

The fact that (33) can be violated when FCR is implemented using swept regions
has important consequences. Without (33) holding, the two OBR formulations (20)
and (37) are still equivalent. However, we cannot carry out the steps in Section 4.2,
which reduced (37) to the M-OBR formulation (43). Therefore, violation of (33)
invalidates Proposition 4.1, Theorems 3–4, and Corollary 4.2. What this means in
practice is that the feasible set in (43) may become void, in which case the M-OBR
problem has no solution. As a result, the FCR solution defined in (45) ceases to be
connected to the global OBR optimization problem (20) and is not guaranteed to
be in its feasible set. The practical dimension of this fact is that the FCR solution
may violate the local bounds. Section 7.3 provides an instructive example in two
dimensions that shows the loss of monotonicity when FCR is implemented using
swept regions.

6 Algorithms II: Solution techniques for the OBR problem

We discuss optimization techniques for the solution of the OBR problem assuming
a swept-region approximation. In compact matrix / vector notation problem (20) has
the form

min
~F∈RM

1
2
(~F−~FH)T(~F−~FH) subject to

~bmin ≤ A~F ≤~bmax ,

(50)

where M denotes the number of unique flux variables, F̃h
i j . We also define ~F ∈ RM ,

~FH ∈ RM ,~bmin ∈ RK and~bmax ∈ RK such that ~Fι(i, j) = F̃h
i j , ~F

H
ι(i, j) = F̃T

i j , (~bmin)i =

mmin
i − m̃i and (~bmax)i = mmax

i − m̃i, respectively, where ι is an indexing function.
Finally we let A∈RK×M be a matrix with entries−1, 0 and 1 defining the inequality
constraints in (20) or a related proxy (see swept-region approximation, Bochev et al
(2011, Sec. 4.1,4.2)). The matrix A is typically very sparse, with M > K in 2D and
3D. We abbreviate the nonnegative orthant as Rm

+ = {x ∈ Rm : x≥ 0}.
Rather than solving (50) directly, we focus on its dual formulation. This allows us

to reformulate the problem into a simpler, bound-constrained optimization problem.

Theorem 5. Given the definitions of ~FH ∈ RM , ~bmin ∈ RK , ~bmax ∈ RK , and A ∈
RK×M from above, let us define Jp : RM → R and Jd : R2K → R as

Jp(~F) =
1
2
‖~F−~FH‖2

2
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and

Jd(~λ ,~µ) =
1
2
‖AT~λ −AT~µ‖2

2−〈~λ ,~bmin−A~FH〉−〈~µ,−~bmax +A~FH〉.

Then, we have that

min
F∈RM

{
Jp(~F) :~bmin ≤ A~F ≤~bmax

}
= min

(~λ ,~µ)∈R2K
+

{
Jd(~λ ,~µ)

}
where we call the first problem the primal and the second problem the dual. Fur-
thermore,

{~FH +AT(~λ ∗−~µ∗)}= arg min
F∈RM

{
Jp(~F) :~bmin ≤ A~F ≤~bmax

}
whenever

(~λ ∗,~µ∗) ∈ arg min
(~λ ,~µ)∈R2K

+

{
Jd(~λ ,~µ)

}
.

Proof. We begin with the observation that Jp denotes a strictly convex, continuous
function and that {~F ∈RM :~bmin ≤A~F ≤~bmax} denotes a bounded, closed, convex
set. Therefore, a unique minimum exists and is attained. Furthermore, since there
exists an ~F such that~bmin < A~F <~bmax, we satisfy Slater’s constraint qualification.
This tells us that strong duality holds, which implies that the Lagrangian dual exists
and possesses the same optimal value as the original problem.

Based on this knowledge, we notice that

min
F∈RM

{
Jp(~F) :~bmin ≤ A~F ≤~bmax

}
= min

F∈RM
max

(~λ ,~µ)∈R2K
+

{
Jp(~F)−〈A~F−~bmin,~λ 〉−〈~bmax−AF,~µ〉

}
= max

(~λ ,~µ)∈R2K
+

min
F∈RM

{
Jp(~F)−〈~F ,AT(~λ −~µ)〉+ 〈~bmin,~λ 〉−〈~bmax,~µ〉

}
.

Next, we consider the function J : RM → R where

J(~F) = Jp(~F)−〈~F ,AT(~λ −~µ)〉

and (~λ ,~µ) ∈ R2K are fixed. We see that J is strictly convex. Therefore, it attains its
unique minimum when ∇J = 0. Specifically, when

~F−~FH −AT(~λ −~µ) = 0,

which occurs if and only if

~F = ~FH +AT(~λ −~µ).
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Therefore, we may find the optimal solution to our original problem with this equa-
tion when (~λ ,~µ) are optimal. In addition, we may use this knowledge to simplify
our derivation of the dual. Let ω = AT(~λ −~µ) and notice that

max
(~λ ,~µ)∈R2K

+

min
F∈RM

{
Jp(~F)−〈~F ,AT(~λ −~µ)〉+ 〈bmin,~λ 〉−〈bmax,~µ〉

}
= max

(~λ ,~µ)∈R2K
+

{
Jp(~FH +ω)−〈~FH +ω,ω)〉+ 〈bmin,~λ 〉−〈bmax,~µ〉

}
= max

(~λ ,~µ)∈R2K
+

{
1
2
‖ω‖2

2−〈~FH ,ω〉−‖ω‖2
2 + 〈bmin,~λ 〉−〈bmax,~µ〉

}
= max

(~λ ,~µ)∈R2K
+

{
−1

2
‖AT(~λ −~µ)‖2

2−〈A~FH ,~λ −~µ〉+ 〈bmin,~λ 〉−〈bmax,~µ〉
}

= min
(~λ ,~µ)∈R2K

+

{
1
2
‖AT(~λ −~µ)‖2

2 + 〈A~FH ,~λ −~µ〉−〈bmin,~λ 〉+ 〈bmax,~µ〉
}

= min
(~λ ,~µ)∈R2K

+

{
1
2
‖AT~λ −AT~µ‖2

2−〈~λ ,~bmin−A~FH〉−〈~µ,−~bmax +A~FH〉
}

= min
(~λ ,~µ)∈R2K

+

{
Jd(~λ ,~µ)

}
.

Hence, we see the equivalence between our two optimization problems and note
that the equation ~F = ~FH +AT(~λ −~µ) allows us to find an optimal primal solution
given an optimal solution to the dual.

Although the primal problem is strictly convex and possesses a unique optimal
solution, the dual formulation does not. Rather, the dual problem is convex, but not
strictly convex, so multiple minima may exist. Second, our formula for reconstruct-
ing the primal solution from the dual depends on an optimal dual solution. If the
solution to the dual is not optimal, the reconstruction formula may generate infeasi-
ble solutions. With these points in mind, we require two additional definitions before
we may proceed to our optimization algorithm.

Definition 6.1 We define the diagonal operator, Diag : Rm→ Rm×m, as

[Diag(x)]i j =

{
xi i = j
0 i 6= j .

Definition 6.2 For some symmetric, positive semidefinite H ∈ Rm×m and some~b ∈
Rm, we define the operator vH,~b : Rm→ Rm as

vH,~b(x) =
{

xi [Hx+~b]i ≥ 0
1 [Hx+~b]i < 0

}
.

When both H and~b are clear from the context, we abbreviate this function as v.
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In order to solve the dual optimization problem, we use a simplified version of
the locally convergent Coleman-Li algorithm (Coleman and Li (1996)). The key to
this algorithm follows from the following lemma.

Lemma 6.1 Let H ∈ Rm×m be symmetric, positive semidefinite and let ~b ∈ Rm.
Then, for some x∗ ≥ 0, we have that

x∗ ∈ arg min
x∈Rm

+

{
1
2
〈Hx,x〉+ 〈~b,x〉

}
⇐⇒ Diag(v(x∗))(Hx∗+~b) = 0.

Proof. We begin with the observation that since H is symmetric, positive semidefi-
nite, the problem

min
x∈Rm

+

{
1
2
〈Hx,x〉+ 〈~b,x〉

}
represents a convex optimization problem with a coercive objective and a closed,
convex set of constraints. Therefore, a minimum exists and the first order optimality
conditions become sufficient for optimality.

In the forward direction, we assume that we have an optimal pair (x∗,~λ ∗) that
satisfy the first order optimality conditions,

Hx∗+~b−~λ ∗ = 0

x∗ ≥ 0,~λ ∗ ≥ 0

Diag(x∗)~λ ∗ = 0.

According to these equations,~λ ∗=Hx∗+~b and~λ ∗≥ 0. This implies that Hx∗+~b≥
0. Therefore, according to the definition of v, [Diag(v(x∗))]ii = x∗i for all i. This tells
us that

[Diag(v(x∗))(Hx∗+~b)]i = x∗i [Hx∗+~b]i = x∗i~λ
∗
i = 0

where the final equality follows from our fourth optimality condition, complemen-
tary slackness.

In the reverse direction, we assume that Diag(v(x∗))(Hx∗+~b) = 0 for some x∗ ∈
Rm
+. Since the problem

min
x∈Rm

+

{
1
2
〈Hx,x〉+ 〈~b,x〉

}
represents a convex optimization problem, it is sufficient to show that the first order
optimality conditions hold for x∗ and some~λ ∗. Of course, we immediately see that
we satisfy primal feasibility since x∗ ≥ 0 by assumption.

Due to the definition of v, our initial assumption implies that Hx∗+~b≥ 0. If this
were not the case, then there would exist an i such that [Hx∗+~b]i < 0. In this case,
we see that [v(x∗)]i = 1 and that [Diag(v(x∗))(Hx∗+~b)]i = [Hx∗+~b]i < 0, which
contradicts our initial assumption. Therefore, Hx∗+~b ≥ 0. As a result, let us set
~λ ∗=Hx∗+~b. This allows us to satisfy our first optimality condition, Hx∗+~b−~λ ∗=
0 as well as our third,~λ ∗ ≥ 0.
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In order to show that we satisfy complementary slackness, we combine our initial
assumption as well as our knowledge that Hx∗+~b≥ 0 to see that

0 = Diag(v(x∗))(Hx∗+~b)

= Diag(x∗)(Hx∗+~b)

= Diag(x∗)~λ ∗.

Therefore, we satisfy our final optimality condition and, hence, x∗ denotes an opti-
mal solution to the optimization problem.

The above lemma allows us to recast a bound-constrained, convex quadratic op-
timization problem into a piecewise differentiable system of equations. In order to
solve this system of equations, we apply Newton’s method. Before we do so, we
require one additional definition and a lemma.

Definition 6.3 For some symmetric, positive semidefinite H ∈ Rm×m and some~b ∈
Rm, we define the operator KH,~b : Rm→ Rm×m as

[KH,~b(x)]i j =

{
1 [Hx+~b]i ≥ 0
0 [Hx+~b]i < 0

.

When both H and~b are clear from the context, we abbreviate this operator as K.

Lemma 6.2 Let H ∈ Rm×m be symmetric, positive definite,~b ∈ Rm, and define the
function J : Rm→ R as

J(x) = Diag(v(x))(Hx+~b).

Then, we have that

J′(x) = K(x)Diag(Hx+~b)+Diag(v(x))H.

Proof. Let us begin by assessing the derivative of v. We notice that

[v(x+ t~η)]i =

{
xi + t~ηi [Hx+b]i ≥ 0
1 [Hx+b]i < 0 .

Therefore, from a piecewise application of Taylor’s theorem, we see that

[v′(x)~η ]i =

{
~ηi [Hx+b]i ≥ 0
0 [Hx+b]i < 0 .

Next, we apply a similar technique to J. Let us define g : Rm → R so that g(x) =
Hx+~b. Then, we see that
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J(x+ t~η) =Diag(v(x+ t~η))(H(x+ t~η)+~b)

=Diag(v(x)+ tv′(x)~η +o(|t|))(Hx+~b+ t~η)

=Diag(v(x))g(x̄)+ t
(
Diag(v(x))H~η +Diag(v′(x)~η)g(x̄)

)
+o(|t|).

Hence, from a piecewise application of Taylor’s theorem, we have that

J′(x)~η = Diag(v(x))H~η +Diag(v′(x)~η)(Hx+~b)

= Diag(v(x))H~η +K(x)Diag(Hx+~b)~η .

Therefore, J′(x) = K(x)Diag(Hx+~b)+Diag(v(x))H.

The preceding lemma allows us to formulate Newton’s method where we seek
a step ~p ∈ Rm such that J′(x)~p =−J(x). Although the operator J′(x) is well struc-
tured, it is nonsymmetric. We symmetrize the system as follows.

Definition 6.4 For some symmetric, positive semidefinite H ∈ Rm×m and some~b ∈
Rm, we define the operator DH,~b : Rm

+→ Rm×m as

DH,~b(x) = Diag(vH,~b(x))
1/2.

When both H and~b are clear from the context, we abbreviate this operator as D.

Lemma 6.3 Let H ∈ Rm×m be symmetric, positive semidefinite and let ~b ∈ Rm.
Then, we have that

(K(x)Diag(Hx+~b)+Diag(v(x))H)~p =−Diag(v(x))(Hx+~b)

⇐⇒(K(x)Diag(Hx+~b)+D(x)HD(x))~q =−D(x)(Hx+~b)

where ~p = D(x)~q.

Proof. Notice that

0 = (K(x)Diag(Hx+~b)+Diag(v(x))H)~p+Diag(v(x))(Hx+~b)

= (K(x)Diag(Hx+~b)+D(x)2H)~p+D(x)2(Hx+~b)

= D(x)((D(x)−1K(x)Diag(Hx+~b)+D(x)H)~p+D(x)(Hx+~b))

= D(x)((D(x)−1K(x)Diag(Hx+~b)+D(x)H)D(x)~q+D(x)(Hx+~b))

= D(x)((K(x)Diag(Hx+~b)+D(x)HD(x))~q+D(x)(Hx+~b)),

which occurs if and only if

0 = (K(x)Diag(Hx+~b)+D(x)HD(x))~q+D(x)(Hx+~b)

since D(x) is nonsingular.
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Properly, we require a line search to ensure feasible iterates. However, we can
be far more aggressive in practice. In order to initialize the algorithm, we use the
starting iterate of (~λ ,~µ) = (~0,~0). This corresponds to a primal solution where ~F =
~FH . Since the optimal solution to the primal problem is close to the target ~FH , we
expect the optimal solution to the dual problem to reside in a neighborhood close
to zero. As a result, Newton’s method should converge quadratically to the solution
with a step size equal to one. Therefore, we ignore the feasibility constraint and
always use a unit step size. Sometimes, this allows the dual solution to become
slightly infeasible, but the amount of infeasibility tends to be small. In practice,
the corresponding primal solution is always feasible and produces good results. In
order to allow infeasible solutions, we must use the original formulation of Newton’s
method rather than the symmetric reformulation. Namely, the operator D becomes
ill-defined for infeasible points.

When we combine the above pieces, we arrive at the final algorithm.

Table 2 Dual algorithm for the solution of the remap problem

1. Define H ∈ R2K×2K and b ∈ R2K as

H =

[
AAT −AAT

−AAT AAT

]
~b =

[
A~FH −~bmin

−A~FH +~bmax

]
.

2. Initialize x =~0.
3. Until ‖Diag(v(x))(Hx+~b)‖ becomes small or we exceed a fixed number of iterations.

a. When feasible, solve

(K(x)Diag(Hx+~b)+D(x)HD(x))~q =−D(x)(Hx+~b)

and set ~p = D(x)~q. Otherwise, solve

(K(x)Diag(Hx+~b)+Diag(v(x))H)~p =−Diag(v(x))(Hx+~b).

b. Set x = x+~p.

7 A few instructive examples

In this section we present three numerical examples that illustrate the advantages
of the OBR formulation in comparison to the M-OBR formulation. Because, as
shown in Corollary 4.2, the solution of the M-OBR problem (43) is equivalent to
the one given by the FCR algorithm, our study effectively compares and contrasts
the fundamental properties of OBR and FCR; henceforth, we denote the M-OBR /
FCR methods and algorithms by the common acronym M-OBR (FCR).
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Most notably, the three examples reveal that the conditions on the mesh mo-
tion for OBR, given in Theorem 2, are much less restrictive than those for M-OBR
(FCR). First, we demonstrate on a simple three-cell example in one spatial dimen-
sion that for certain mesh motions M-OBR (FCR) does not preserve the shape of
a given density function, while OBR does. Second, we construct a related exam-
ple for which M-OBR (FCR) does not preserve linear density functions under mesh
motions admissible by OBR. Finally, we give a 9-cell example in two spatial dimen-
sions for which a commonly used M-OBR (FCR) algorithm based on swept regions,
see Section 5, does not preserve monotonicity, while OBR does. In the following,
we refer to Section 3 for relevant notation.

We will also compare some of the numerical results with the iFCR algorithm. In
particular, unless otherwise specified, iFCR(k) indicates the k-th iterate of the iFCR
algorithm.

7.1 An example of mesh movement in which OBR preserves shape
and M-OBR (FCR) does not

The goal of this section is to show that the smaller feasible set of the M-OBR (FCR)
formulation (43) can limit its ability to accurately preserve the shape of a given
density function. To this end we design a “torture” test example that shows how the
shape of a given “peak” density function can be changed by M-OBR (FCR) into a
step-function profile. Of course, because M-OBR (FCR) and FCR are equivalent,
the same will hold true for the FCR solution.

A schematic of the torture test is shown in Figure 4. The computational domain
is given by the unit interval, Ω = [0,1]. The old mesh Kh(Ω) is defined by a uniform
partition of the unit interval into 3 cells using the vertices x1 = 0, x2 = 1/3, x3 = 2/3
and x4 = 1. The nodes of the new mesh K̃h(Ω) are set to x̃1 = x1, x̃2 = x2 +∆1,
x̃3 = x3−∆2 and x̃4 = x4, where ∆1 > 0 and ∆2 > 0 are such that ∆1+∆2 < 1/3; see
Figure 4. In other words, the new mesh is defined by compressing the middle cell of
the old mesh. Note that K̃h(Ω) satisfies the locality assumption (3) and that

x2 < x̃2 and x̃3 < x3 . (51)

To complete the specification of the torture test we prescribe the mean density
values ρ1, ρ2, ρ3 on the old cells and boundary values ρb

1 = 0, ρb
3 = 0 at the end-

points. The mean density values are subject to the conditions

ρ1 > ρ3 , ρ2 ≥ ρ1 , and ρ2 ≥ ρ3 . (52)

Specific numbers will be given momentarily. To explain these choices it is necessary
to examine the structure of the feasible set of (37) and its modification (43), special-
ized to the torture test. As before, we follow the rule that the antisymmetry of fluxes
and the symmetry of coefficients ai j are enforced by using index pairs {i, j} for
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Fig. 4 Specification of the “torture” test for shape preservation. The new mesh is defined by com-
pressing the middle cell of the old mesh. The mean density values are subject to the conditions
that ρ1 > ρ3 and that ρ2 is the largest value. The results reported in this section correspond to
∆1 = ∆2 = 0.14, ρ1 = 80, ρ2 = 100, ρ3 = 0, and ρb

1 = ρb
3 = 0.

which i < j. In the case of the torture test, which has three cells, there are two such
pairs, given by {1,2} and {2,3}. Therefore, the independent fluxes are F12 and F23,
the unknown coefficients are a12 and a23, and the OBR problem (37) specializes to

min
a12 ,a23

{
(1−a12)

2(dF12)
2 +(1−a23)

2(dF23)
2} subject to

Q̃min
1 ≤ a12dF12 ≤ Q̃max

1 (1)

Q̃min
2 ≤ a23dF23 − a12dF12 ≤ Q̃max

2 (2)

Q̃min
3 ≤ − a23dF23 ≤ Q̃max

3 (3)

(53)

Regarding the M-OBR (FCR) formulation (37), a simple but tedious calculation
shows that dF12 > 0 and dF23 > 0 whenever (i) the middle cell is compressed, i.e.
(51) holds, and (ii) the first condition in (52) holds, i.e. ρ1 > ρ3. As a result, the
M-OBR (FCR) problem assumes the form
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Point A B C D E F

Definition
Q̃min

1
dF12

Q̃max
1

dF12

Q̃max
3

−dF23

Q̃min
3

−dF23

Q̃max
2

dF23

Q̃min
2

−dF12

Value -25.04 4.10 -20.53 8.62 0.00 3.28

Table 3 Control points for the feasible sets of the OBR (53) and the M-OBR (FCR) (54) problems
and their values for ∆1 = ∆2 = 0.14, ρ1 = 80, ρ2 = 100, ρ3 = 0, and ρb

1 = ρb
3 = 0.


min

a12 ,a23

{
(1−a12)

2(dF12)
2 +(1−a23)

2(dF23)
2} subject to

0≤ a12 ≤min{D+
1 ,D

−
2 } (1)

0≤ a23 ≤min{D+
2 ,D

−
3 } (2)

(54)
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Fig. 5 Structure of the OBR (left pane) and M-OBR (FCR) (right pane) feasible sets when dF12 and
dF23 are positive. The strips between the pairs of lines marked by OBR(1), OBR(2) and OBR(3)
correspond to the three inequality constraints in (53). The lines marked by OBR(2) have positive
slopes given by dF12/dF23. The lines marked by M-OBR(U1) and M-OBR(U2) represent the two
upper upper bounds in the two inequality constraints in (54), respectively. The lower bounds corre-
spond to the coordinate axes and are identified by M-OBR(L1) and M-OBR(L2), respectively. The
shadows point towards the interiors of the domains defined by the constraints. It is evident that the
feasible set of M-OBR (FCR) is a subset of the feasible set of OBR.

The left and the right panes in Figure 5 show cartoons of the feasible sets of
(53) and (54), respectively. The horizontal and the vertical axes in these plots cor-
respond to the unknowns a12 and a23, respectively. The strips between the pairs
of lines marked by OBR(1), OBR(2) and OBR(3) correspond to the three inequal-
ity constraints in (53). Note that the slope of the lines marked by OBR(2) is given
by dF12/dF23 and is therefore positive. The lines marked by M-OBR(U1) and M-
OBR(U2) represent the two upper bounds in the two inequality constraints in (54),
respectively. The lower bounds coincide with the coordinate axes and are marked
by M-OBR(L1) and M-OBR(L2), respectively.
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i = 1 i = 2 i = 3

Q̃min
i -40.66 -5.33 -14.00

Q̃max
i 6.66 0.00 33.33

dFi,i+1 1.62 1.62 —

Table 4 Numerical values for the lower and the upper bounds and the flux differentials in (53)–(54)
corresponding to ∆1 = ∆2 = 0.14, ρ1 = 80, ρ2 = 100, ρ3 = 0, and ρb

1 = ρb
3 = 0.

The relation between the two feasible sets can be understood by examining the
points A, B, C, D, E and F. The first pair of points corresponds to the lower and
upper bounds on a12 imposed by the first constraint in (53). The second pair, i.e.,
C, and D, corresponds to the lower and upper bounds on a23 imposed by the third
constraint in (53). The last two points correspond to the intercepts of the lines as-
sociated with the upper and lower bounds in the second constraint in (53) with the
vertical and horizontal coordinate axes, respectively. The definitions of these points
and their values corresponding to the actual test data used in the study are summa-
rized in Table 3.

To explain the construction of the torture test, note that the shape of the M-OBR
(FCR) feasible set is completely determined by the positions of E and F along the
vertical and the horizontal coordinate axes. This is a consequence of the worst-case
analysis used to derive the constraints of (54). Consequently, by moving E to the
origin the M-OBR (FCR) feasible set can be reduced to a line extending from the
origin to point F. This removes the point (1,1) from the feasible set and forces
the M-OBR (FCR) formulation to pick a solution that corresponds to remap by
low-order fluxes. By moving E to the origin we also shrink the OBR feasible set.
However, because the lines corresponding to the second constraint have positive
slopes, they can be chosen in such a way that (1,1) remains in this feasible set.

In order to move E to the origin we need to set Q̃max
2 /dF23 = 0. It is not hard to

see that this is true whenever (i) the middle cell is compressed, i.e. (51) holds, and
(ii) the second condition in (52), i.e. ρmax

2 = ρ2 holds.
Figure 6 compares the OBR and M-OBR (FCR) solutions on the new mesh for

∆1 =∆2 = 0.14, ρ1 = 80, ρ2 = 100, ρ3 = 0, and boundary values ρb
1 = ρb

3 = 0. Table
4 shows the corresponding values of the lower and the upper inequality bounds as
well as the values of the flux differentials in (53)–(54).

The initial density function has the shape of a “peak” and is shown in the top
pane of Figure 6. The bottom pane in Figure 6 shows clearly that the OBR solution
preserves this shape on the new mesh. However, as one can see from the middle
pane in Figure 6, the M-OBR (FCR) solution changes the shape of the peak to a
step-function profile on the new mesh. We note that the iFCR(2) method delivers
results identical to those of the OBR method.

The constraint sets of (53) and (54) for this example are compared in Figure 7.
We see that (1,1) is included in the former but not in the latter. This is a consequence
of the worst-case analysis used to obtain the constraint set in (54).
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Fig. 6 Initial density function (top pane), M-OBR (FCR) solution (middle pane) and OBR solution
(bottom pane) for ∆1 = ∆2 = 0.14, ρ1 = 80, ρ2 = 100, ρ3 = 0, and ρb

1 = ρb
3 = 0. The OBR solution

preserves the shape of the original density function, while the M-OBR (FCR) solution does not.
The iFCR(2) method delivers results identical to those of the OBR method.

7.2 An example in which OBR preserves linear densities and
M-OBR (FCR) does not

In this section, we investigate the differences between OBR and M-OBR (FCR)
concerning the preservation of linear density functions. The basic setup is closely
related to the previous example. The specification of the computational mesh is
identical. The density function is given by

ρ(x) = x 0≤ x≤ 1 ,

i.e. ρ1 = 1/6, ρ2 = 1/2, ρ3 = 5/6, ρb
1 = 0 and ρb

2 = 1. We consider a series of
compression increments ∆1, ∆2 given by
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Fig. 7 Level sets of the objective functional and the feasible sets of problems (53) and (54) for
∆1 = ∆2 = 0.14, ρ1 = 80, ρ2 = 100, ρ3 = 0, and ρb

1 = ρb
3 = 0. The regions between horizontal

(magenta), slanted (red) and vertical (blue) lines on the left pane correspond to the first, second
and third constraints in the OBR problem (53). Their intersection (red region) gives the OBR
feasible set which contains the point (1,1). The feasible set of M-OBR (FCR) is given by the solid
horizontal segment (black) and does not contain the point (1,1). The right pane shows a zoom of
the OBR and M-OBR (FCR) feasible sets.

∆1 = ∆2 =
`−1

6`
,

where ` = {7,8,9,10,100,1000}, resulting in `-fold compressions of the middle
cell.

The initial linear density function is remapped onto the compressed mesh and
then back onto the original mesh, where we record the L2 error between the thus ob-
tained and the original density. Table 5 clearly shows that while OBR preserves
linear densities for arbitrary compressions of the middle cell, M-OBR (FCR) is
linearity-preserving only for `≤ 8. The iFCR algorithm, for a large number of iter-
ations, recaptures the behavior of OBR.

The root cause for the loss of the linearity preservation in this example is the
same as for the loss of shape preservation in the last section. The M-OBR (FCR)
problem (54) preserves linearity if and only if the unconstrained minimizer (1,1) of
the functional in (54) is included in its feasible set. When the middle cell is com-
pressed the feasible set of M-OBR (FCR) shrinks and eventually ceases to contain
the point (1,1).

Ultimately, the loss of linearity preservation in the M-OBR (FCR) is a function
of the mesh movement. To prevent the loss of this important property we recom-
mend that M-OBR (FCR) implementations include the following test to determine
the admissible mesh motions. Given a candidate new mesh, compute the quantities
P−i , D−i and P+

i , D+
i defined in (38)–(39), for the monomial x in one dimension,

monomials x and y in two dimensions and monomials x, y and z in three dimen-
sions. Accept the mesh if and only if D−i ≥ 1 and D+

i ≥ 1, whenever P−i < 0 and
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P+
i > 0, respectively. This condition guarantees that ai j = 1 are in the feasible set of

the M-OBR (FCR) problem (46).

`= 7 `= 8 `= 9 `= 10 `= 100 `= 1000

OBR 1.67e-16 0 3.20e-17 3.58e-17 1.63e-16 1.95e-14

FCR 4.53e-17 3.58e-17 2.32e-03 4.46e-03 2.09e-02 2.25e-02

iFCR(2) 1.24e-16 1.57e-16 1.57e-16 1.57e-16 3.31e-02 3.87e-02

iFCR(20) 1.24e-16 1.57e-16 1.57e-16 1.57e-16 1.92e-16 3.30e-02

iFCR(200) 1.24e-16 1.57e-16 1.57e-16 1.57e-16 1.92e-16 1.69e-15

Table 5 L2 errors in the OBR, M-OBR (FCR) and iFCR remap of a linear density function in
one dimension, for different compression ratios ` : 1 of the middle cell. Errors close to machine
precision are highlighted. OBR preserves linear densities for arbitrarily compressed middle cells,
while M-OBR (FCR) does not. iFCR is linearity preserving given a sufficient, possibly very large,
number of iterations.

We also investigated whether the good performance of the iFCR algorithm for
large number of iterations depends on OBR recovering the high-order flux in com-
putations. Figures 8–9 show detailed computations in which it is clear that similar
results between iFCR and OBR can be obtained also in the case in which OBR does
not recover the target fluxes. This indicates that for a sufficiently large number of
iterations the iFCR solution converges to the OBR solution. Our conjecture is that
iFCR may be a solution procedure for OBR.

7.3 OBR preserves monotonicity when M-OBR (FCR) does not

Motivated by the one-dimensional examples we devise a simple 9-cell test that ex-
amines the fundamental properties of OBR and M-OBR (FCR) in two dimensions.
The test is a tensor-product version of the one-dimensional torture test. The com-
putational domain is given by the product of unit intervals, Ω = [0,1]× [0,1]. The
old mesh Kh(Ω) is defined by a uniform partition of the unit intervals in x and y
direction into 3 cells using the vertices x1 = 0, x2 = 1/3, x3 = 2/3 and x4 = 1 and
y1 = 0, y2 = 1/3, y3 = 2/3 and y4 = 1, respectively. The nodes of the new mesh
K̃h(Ω) are set to

x̃1 = x1, x̃2 = x2 +∆
x
1 , x̃3 = x3−∆

x
2 , x̃4 = x4 ,

ỹ1 = y1, ỹ2 = y2 +∆
y
1 , ỹ3 = y3−∆

y
2 , ỹ4 = y4 ,

where ∆
x,y
1 > 0 and ∆

x,y
2 > 0 are such that ∆ x

1 +∆ x
2 < 1/3 and ∆

y
1 +∆

y
2 < 1/3. In

other words, as in one spatial dimension, the new mesh is defined by compressing
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Fig. 8 Euclidean norm of the difference (vertical axes) between the computed iFCR
and OBR fluxes for problems (53) and (54) for increasing numbers of iFCR itera-
tions (horizontal axes). The compression of the middle cell is given by ∆1 = ∆2 ∈
{0.1660 (black), 0.1661 (red), 0.1662 (blue), 0.1663 (green), 0.1664 (gray), 0.1665 (cyan)}. The
density profile is ρ1 = 80, ρ2 = 100, ρ3 = 0, and ρb

1 = ρb
3 = 0. We use logarithmic (top pane)

and linear scales (bottom pane). In this example, OBR recovers the high-order target flux.

the middle cell of the old mesh. Note that the new mesh satisfies conditions (25)-
(26), i.e. is admissible by OBR.

We examine both monotonicity (for OBR, M-OBR (FCR) and the donor-cell
method based on swept regions) as well as the preservation of linear densities (for
OBR and M-OBR (FCR)). For monotonicity studies, we employ a single remap
from the original to the compressed mesh, while for the study of linearity preserva-
tion the density is additionally remapped back onto the original mesh. We point out
that M-OBR (FCR) and the swept-region donor-cell method use the same compu-
tation of low-order fluxes. Monotonicity violations are detected based on the viola-
tions of inequality constraints in (20).

The density function is given by

ρ(x,y) = x 0≤ x,y≤ 1 .

We study a series of compression increments ∆
x,y
1 , ∆

x,y
2 given by
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Fig. 9 Euclidean norm of the difference (vertical axes) between the computed iFCR
and OBR fluxes for problems (53) and (54) for increasing numbers of iFCR itera-
tions (horizontal axes). The compression of the middle cell is given by ∆1 = ∆2 ∈
{0.1660 (black), 0.1661 (red), 0.1662 (blue), 0.1663 (green), 0.1664 (gray), 0.1665 (cyan)}. The
density profile is ρ1 = 80, ρ2 = 82, ρ3 = 0, and ρb

1 = ρb
3 = 0. We use logarithmic (top pane)

and linear scales (bottom pane). In this example, OBR does not recover the high-order target flux,
yet the iFCR flux converges to the OBR flux, suggesting that iFCR may be a solution procedure
for OBR.
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Fig. 10 A 3×3 uniform initial grid (left pane) and the “compressed” grid (right pane) with a 4×4-
fold compression of the middle cell.
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∆
x,y
1 = ∆

x,y
2 =

`−1
6`

,

where ` = {5,6,7,14,15,16,100} for the monotonicity study and for the linearity
preservation study, ` = {3,4,5,15,16,100}, amounting to `×`-fold compressions
of the middle cell. An illustration for `= 4 is shown in Figure 10.

`= 5 `= 6 `= 7 `= 14 `= 15 `= 16 `= 100

OBR X X X X X X X

FCR X X X X – – –

Donor-cell X – – – – – –

iFCR(2) X X X X X – –

iFCR(4) X X X X X X –

iFCR(721) X X X X X X X

Table 6 Monotonicity of OBR, M-OBR (FCR), the donor-cell method and iFCR, implemented
using swept regions, with respect to the remap of a linear density function in two dimensions,
for different compression ratios `×` : 1 of the middle cell. OBR is bound-preserving throughout,
while M-OBR (FCR) and the donor-cell method are not. iFCR is monotone given a sufficient
number of iterations. For iFCR(n) we select the smallest number of iterations n resulting in a
bound-preserving remap, for compression ratios `× ` : 1, with ` ∈ {15,16,100}, respectively.

`= 3 `= 4 `= 5 `= 15 `= 16 `= 100

OBR 1.36e-16 3.90e-16 2.91e-16 7.99e-16 3.33e-15 2.08e-13

FCR 1.32e-16 4.34e-03 1.06e-02 4.33e-02 4.60e-02 1.97e-01

iFCR(2) 1.36e-16 3.90e-16 6.65e-04 4.07e-02 4.36e-02 1.30e-01

iFCR(20) 1.36e-16 3.90e-16 2.91e-16 7.99e-16 3.00e-03 1.20e-01

iFCR(834) 1.36e-16 3.90e-16 2.91e-16 7.99e-16 3.33e-15 2.08e-13

Table 7 L2 errors in the OBR, M-OBR (FCR) and iFCR remap of a linear density function in
two dimensions, for different compression ratios `×` : 1 of the middle cell. Errors close to ma-
chine precision are highlighted. OBR preserves linear densities for arbitrarily compressed middle
cells, while M-OBR (FCR) does not. For iFCR(n) we select the smallest number of iterations n
resulting in a linearity-preserving remap, for the compression ratios `×` : 1, with ` ∈ {4,15,100},
respectively.

Our first observation is that neither the donor-cell method nor M-OBR (FCR) pre-
serve monotonicity for certain mesh motions admissible by OBR, see Table 6. This
result is not surprising in view of the condition on mesh motion for the swept-region
donor-cell method given in Margolin and Shashkov (2003, p.279), which is violated
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for meshes associated with `≥ 6. Table 6 also reveals that M-OBR (FCR) succeeds
in “repairing” the loss of monotonicity inherited from the donor-cell method for
6≤ `≤ 14, but eventually loses monotonicity for `≥ 15.

Table 7 indicates that the loss of linearity preservation in M-OBR (FCR) sets in at
fairly low compressions of the middle cell (`≥ 4) and is therefore not directly related
to the loss of monotonicity in the swept-region low-order fluxes, which occurs at
` ≥ 6. This observation is in agreement with one-dimensional results, where the
low-order fluxes are computed based on exact cell intersections and are therefore
provably bound-preserving as long as the locality assumption (3) is satisfied, and
where M-OBR (FCR) nevertheless fails to preserve linear densities for compressive
mesh motions.

In contrast to M-OBR (FCR) and the donor-cell method, OBR is monotonicity
and linearity preserving in all our tests. Note also that the iFCR method requires a
large number of iterations to recover the OBR solution. The differences between the
methods are illustrated for the compression parameter `= 16 in Figures 11 and 12.
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Fig. 11 Linear density ρ(x,y) = x remapped from the uniform 3×3 grid to the compressed “tor-
ture” grid with ` = 16. Left to right: the donor-cell method, M-OBR (FCR), OBR. It is clear that
OBR gives the best density approximation.
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Fig. 12 Linear density ρ(x,y) = x remapped from the uniform 3×3 grid to the compressed “tor-
ture” grid with `= 16. Left to right: iFCR(2), iFCR(10), iFCR(200). Given a sufficient number of
iterations, iFCR recovers the OBR result from Figure 11.
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8 Computational studies

The purpose of this section is an in-depth comparison of accuracy, robustness and
computational cost of OBR and M-OBR (FCR). These attributes are assessed on a
series of convergence studies in two dimensions involving (i) smooth cyclic remap
on grids with moderate displacements and (ii) cyclic remap on grids with large dis-
placements.

8.1 Methodology for the estimation of convergence rates of remap
algorithms

The convergence studies in this section are designed to assess the asymptotic ac-
curacy of the OBR and M-OBR (FCR) algorithms in the context of a continuous
rezone strategy. In this case, the appropriate notion of remap error and convergence
rates can be defined with the help of a cyclic remap test as in Margolin and Shashkov
(2003). The precise methodology used in the chapter is described below.

A cyclic remap test simulates continuous rezone by performing remap over a
parametrized sequence of grids Kr

h(Ω), r = 0, . . . ,R, such that the following three
conditions are satisfied:

• Every Kr
h(Ω), r = 1, . . . ,R, is topologically equivalent to the initial grid K0

h (Ω),
i.e. all grids in the sequence have the same number of cells and the same connec-
tivity as K0

h (Ω).
• Any two consecutive grids Kr−1

h (Ω), Kr
h(Ω) satisfy the locality assumption (2).

• The first and the last grids coincide, i.e., K0
h (Ω) = KR

h (Ω).

The integer R is the number of remap steps. Its reciprocal 1/R can be thought of as
a “pseudo-time” step which defines the temporal resolution of the cyclic remap test.
The total resolution of the test is specified by the pair (K,R), where K is the number
of cells in K0

h (Ω).
Given a cyclic mesh sequence {Kr

h(Ω)}R
r=0, called a cyclic grid, with total reso-

lution (K,R), let ~ρ r ∈ RK denote the approximate density solution on Kr
h(Ω), and

‖·‖ be a given norm on RK . The remap error on {Kr
h(Ω)}R

r=0 is defined by the norm
of the density difference on the first and the last grids in the sequence, i.e.

E (ρ;‖ · ‖,K,R) = ‖~ρ 0−~ρ R‖ . (55)

This definition is justified by the fact that K0
h (Ω) = KR

h (Ω), and so the difference
between the first and last solutions provides a measure of the total error accrued by
the remap algorithm.

To compute the remap error E (ρ;‖·‖,K,R) in (55) we use three norms suggested
in Margolin and Shashkov (2003). Note that in the case of cyclic remap one does not
need to know the exact density distribution to compute the numerical error, which
can be instead calculated by comparing the initial and final cell densities. Given an
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arbitrary vector ~φ ∈ RK these norms are defined as follows:

‖~φ‖2 =

(
K

∑
i=1

φ
2
i V (κi)

)1/2

, ‖~φ‖1 =
K

∑
i=1
|φi|V (κi) , ‖~φ‖∞ = max

0≤i≤K
|φi| . (56)

If ~φ is a piecewise constant approximation of a given scalar function φ(x), then these
norms are discrete approximations of the L2, L1 and L∞ norms on Ω , respectively.

Once the appropriate notion of remap error is defined, the estimate of conver-
gence rates proceeds in the usual fashion: we compute remap errors using a se-
quence of cyclic grids with increasing resolution and then estimate the slope of the
curve representing the log-log plot of the remap error versus the spatial resolution
of the cyclic grid. To this end we use least-squares regression fit. Specifically, for a
sequence of cyclic grids with resolutions (Kq,Rq), q = 1, . . . ,Q and the correspond-
ing remap errors E q = E (ρ;‖ ·‖,Kq,Rq), the rate of convergence νq is estimated by
least-squares regression, i.e. by solving the minimization problem

{νq,ωq}= argmin
q

∑
i=1

(logE q +ν logRq−ω)2 , 1 < q≤ Q . (57)

8.2 Smooth cyclic remap on grids with moderate displacements

The cyclic grids and the density functions for this study are adopted from Margolin
and Shashkov (2003); Liska et al (2010). Specifically, for a given number R of remap
steps and r = 0, . . . ,R the mesh node positions in Kr

h(Ω) are given by

xr
i j = x(ξi,η j, tr), yr

i j = y(ξi,η j, tr), 0≤ i≤ Nx, 0≤ j ≤ Ny , (58)

where Nx and Ny are the numbers of cells in x and y direction, respectively, x(ξ ,η , t)
and y(ξ ,η , t) are coordinate maps and

ξi =
i

Nx
, i= 0, . . . ,Nx; η j =

j
Ny

, j = 0, . . . ,Ny; and tr =
r
R
, r = 0, . . . ,R ,

are the initial (uniform) grid coordinates and the sequence of pseudo-time steps,
respectively. We define two sets of coordinate maps. The first set is given by

x(ξ ,η , t) = (1−α(t))ξ +α(t)ξ 3; (59a)
y(ξ ,η , t) = (1−α(t))η +α(t)η2; (59b)

α(t) =
sin(4πt)

2
. (59c)

It generates a sequence of rectangular, tensor-product (logically Cartesian) grids.
The second set is
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x(ξ ,η , t) = ξ +α(t)sin(2πξ )sin(2πη); (60a)
y(ξ ,η , t) = η +α(t)sin(2πξ )sin(2πη); (60b)

with

α(t) =

{
t/5 if t ≤ 5

(1− t)/5 if t ≤ 5
.

The grids defined by (60) are logically Cartesian but not rectangular. One can show
that for any 0 ≤ t ≤ 1 the grids generated by (59) and (60) are valid (see Margolin
and Shashkov (2003)).

Convergence rates are estimated as follows. First, we use (58) to define a se-
quence of Q cyclic grids where Q = 4, q = 1, . . . ,Q, with total resolutions (Kq ≡
Nq

x × Nq
y ,Rq) given by (64× 64,320), (128× 128,640), (256× 256,1280), and

(512× 512,2560), respectively. Thus, the total resolution is increased by a factor
of (2×2,2) in every subsequent set. Then, for every norm in (56) we compute the
errors

E q = E (ρ;‖ · ‖,Kq,Rq), q = 1,2,3,4,

and solve (57) with {E 1,E 2}, {E 1,E 2,E 3}, and {E 1,E 2,E 3,E 4}. This approach
yields three increasingly accurate estimates of the convergence rates in each norm.

This estimation procedure is applied to three different density functions sug-
gested in Margolin and Shashkov (2003): the “sine”

ρ(x,y) = 1+ sin(2πx)sin(2πy) , (61)

the “peak”

ρ(x,y) =

1 , r > 0.25

max{1.001,4(r−0.25)+1} , r ≤ 0.25
, (62a)

r =
√

(x−0.5)2 +(y−0.5)2 , (62b)

and the “shock”

ρ(x,y) =

2 , y≥ (x−0.4)/0.3

1 , y≤ (x−0.4)/0.3
. (63)

Errors of the OBR and M-OBR (FCR) algorithms and the corresponding conver-
gence rates are presented in Tables 8–10. We observe that for the peak and shock
densities the OBR and M-OBR (FCR) convergence rates are virtually identical,
whereas for the sine density the L2 and L∞ rates of OBR are better by 0.2. Intuitively
this can be explained by noting that the peak and shock examples are comprised of
piecewise linear functions for which the global optimization problem likely decou-
ples into local optimization problems around the discontinuities. This diminishes the
distinction between global (OBR) and local (M-OBR) optimization formulations of
remap. In contrast, for the sine density, which is a globally smooth function, the
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OBR

#cells #remaps L2 err L1 err L∞ err L2 rate L1 rate L∞ rate

64×64 320 6.58e-04 4.91e-04 5.78e-03 — — —
128×128 640 8.88e-05 6.16e-05 1.64e-03 2.89 3.00 1.82
256×256 1280 1.21e-05 7.82e-06 4.65e-04 2.88 2.99 1.82
512×512 2560 1.70e-06 9.89e-07 1.39e-04 2.87 2.98 1.80

FCR

64×64 320 7.78e-04 4.95e-04 8.75e-03 — — —
128×128 640 1.22e-04 6.49e-05 2.81e-03 2.67 2.93 1.64
256×256 1280 2.00e-05 8.49e-06 8.89e-04 2.64 2.93 1.65
512×512 2560 3.43e-06 1.08e-06 2.84e-04 2.61 2.95 1.65

Table 8 OBR and M-OBR (FCR) errors and convergence rate estimates for the “sine” density (61)
using 4 tensor-product cyclic grids defined by (59). The L2 and L∞ rates for OBR are slightly better
than those for M-OBR (FCR). Additionally, we observe superconvergence for both methods in L2
and L1 norms.

OBR

#cells #remaps L2 err L1 err L∞ err L2 rate L1 rate L∞ rate

64×64 320 6.97e-03 2.55e-03 8.00e-02 — — —
128×128 640 3.09e-03 8.90e-04 5.06e-02 1.17 1.52 0.66
256×256 1280 1.40e-03 3.10e-04 3.16e-02 1.16 1.52 0.67
512×512 2560 6.40e-04 1.09e-04 1.96e-02 1.15 1.52 0.68

FCR

64×64 320 5.98e-03 2.14e-03 8.33e-02 — — —
128×128 640 2.54e-03 7.30e-04 5.29e-02 1.24 1.55 0.66
256×256 1280 1.11e-03 2.50e-04 3.33e-02 1.22 1.55 0.66
512×512 2560 4.98e-04 8.71e-05 2.07e-02 1.20 1.54 0.67

Table 9 OBR and M-OBR (FCR) errors and convergence rate estimates for the “peak” density
(62a) using 4 tensor-product cyclic grids defined by (59). For this classical example, the conver-
gence rates of OBR and M-OBR (FCR) are virtually identical.

feasible set of the global optimization problem remains fully coupled. In addition,
we note that the L2 and L1 results in Table 8 are subject to superconvergence due to
the choice of the grids.

Overall, these results indicate that OBR and M-OBR (FCR) have approximately
the same accuracy on classical test problems. Consequently, one may wonder if the
effects of the toy examples of Section 7 are never encountered in practice. In the
next section we confirm, however, that important differences exist not only on toy
problems; in particular, we demonstrate that OBR is more accurate and more robust
than M-OBR (FCR) on grids that are of significant practical merit.
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OBR

#cells #remaps L2 err L1 err L∞ err L2 rate L1 rate L∞ rate

64×64 320 9.12e-02 2.88e-02 4.72e-01 — — —
128×128 640 7.12e-02 1.75e-02 4.86e-01 0.36 0.72 -0.04
256×256 1280 5.57e-02 1.06e-02 4.87e-01 0.36 0.72 -0.02
512×512 2560 4.33e-02 6.35e-03 4.98e-01 0.36 0.73 -0.02

FCR

64×64 320 8.43e-02 2.45e-02 4.67e-01 — — —
128×128 640 6.57e-02 1.47e-02 4.77e-01 0.36 0.73 -0.03
256×256 1280 5.12e-02 8.87e-03 4.77e-01 0.36 0.73 -0.02
512×512 2560 3.99e-02 5.34e-03 4.88e-01 0.36 0.73 -0.02

Table 10 OBR and M-OBR (FCR) errors and convergence rate estimates for the “shock” density
(63) using 4 tensor-product cyclic grids defined by (59). For this classical example, the convergence
rates of OBR and M-OBR (FCR) are virtually identical.

8.3 Cyclic remap on grids with large displacements

Theorem 3 asserts that the feasible set of M-OBR (FCR) is always a subset of the
feasible set of the OBR formulation. This suggests that (37) may be more accurate
than (43). Examples in this section show that this is indeed the case and that the
smaller feasible set of (43) can impact adversely the accuracy and, more importantly,
robustness of M-OBR (FCR).

We begin with a study of accuracy. To this end, we compare convergence rates of
the OBR and M-OBR (FCR) algorithms for the sine density (61) on a sequence of
cyclic grids resulting from compressing every third cell equally in x and y direction,
followed by a relaxation into a fully uniform grid. This mesh motion is motivated by
the examples of Section 7 and is intended to mimic the effects of a repeated mesh
repair procedure, see Figure 13.

The ‘repeated-repair’ cyclic grid is given by

xr
i j =


x0

i j if r is even, for all i, j, otherwise (when r is odd):
x0

i j if i≡ 0 (mod 3), or if i = Nx,

x0
i j +∆x if i≡ 1 (mod 3), for i < Nx,

x0
i j−∆x if i≡ 2 (mod 3), for i < Nx

(64)

and

yr
i j =


y0

i j if r is even, for all i, j, otherwise (when r is odd):
y0

i j if j ≡ 0 (mod 3), or if j = Ny,

y0
i j +∆y if j ≡ 1 (mod 3), for j < Ny,

y0
i j−∆y if j ≡ 2 (mod 3), for j < Ny .

(65)
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Fig. 13 Grid deformation due to local compression (left pane) and the ‘repaired’ uniform grid
(right pane), see (64)-(65).

The initial grid K0
h is a uniform grid on the unit square [0,1]× [0,1]. We set

∆x = ∆y =
4
5
(x0

10− x0
00),

resulting in a constant compression ratio of 4×4 : 1 for every third grid cell in x and
y direction, whenever r is odd. For even r the grid is relaxed to its original position.
See Figure 13.

Estimates of the convergence rates of OBR and M-OBR (FCR) are presented in
Table 11. The first observation is that the accuracy of the OBR algorithm on the
repeated-repair cyclic grid is immune to the underlying mesh motion. In particular,
the convergence rates of OBR in all three norms equals the best possible theoretical
rates for a linearity-preserving scheme.

In contrast, it is clear that the convergence rates of M-OBR (FCR) suffer on
the repeated-repair cyclic grid. The estimates in all three norms show a consistent
trend toward a first-order scheme. We note that this is not due to a potential loss
of monotonicity in low-order (donor-cell) fluxes; the compression parameters have
been chosen such that the monotonicity of low-order fluxes is preserved. In other
words, the loss of accuracy is purely due to a smaller feasible set employed by M-
OBR (FCR). On the other hand, we observe that iFCR recovers the result of OBR
at the expense of only 2 flux iterations per remap.

Our second study examines the robustness of OBR and M-OBR (FCR). To this
end, we investigate the behavior of the methods on 64×64 meshes when the pseudo-
time step 1/R is decreased significantly beyond the previously used test value of
1/320. Table 12 displays the L1 error in remapping the linear density ρ(x,y) = x
on the tensor product cyclic grid (59) for varying pseudo-time steps. In the test,
we choose to declare loss of linearity preservation when the L1 error exceeds 1e-
8. We note that it is expected that both OBR and M-OBR (FCR) will eventually
fail to preserve linear densities due to the restrictions on admissible mesh motions,
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OBR

#cells #remaps L1 err L2 err L∞ err L1 rate L2 rate L∞ rate

128×128 640 2.69e-04 3.65e-04 2.03e-03 — — —
256×256 1280 6.71e-05 9.08e-05 5.07e-04 2.00 2.01 2.00
512×512 2560 1.68e-05 2.27e-05 1.20e-04 2.00 2.00 2.04
1024×1024 5120 4.19e-06 5.66e-06 2.69e-05 2.00 2.00 2.08

FCR

128×128 640 2.81e-04 3.47e-04 1.23e-03 — — —
256×256 1280 9.23e-05 1.19e-04 5.14e-04 1.61 1.54 1.26
512×512 2560 3.65e-05 5.05e-05 2.50e-04 1.47 1.39 1.15
1024×1024 5120 1.69e-05 2.39e-05 1.24e-04 1.35 1.28 1.10

iFCR(2)

128×128 640 2.69e-04 3.64e-04 1.57e-03 — — —
256×256 1280 6.71e-05 9.07e-05 3.95e-04 2.00 2.01 1.99
512×512 2560 1.68e-05 2.27e-05 9.88e-05 2.00 2.00 2.00
1024×1024 5120 4.19e-06 5.66e-06 2.47e-05 2.00 2.00 2.00

Table 11 OBR, M-OBR (FCR) and iFCR(2) errors and convergence rate estimates for the sine
density (61) using 4 cyclic repeated-repair grids defined by (64)-(65). Rates expected of a second-
order scheme are highlighted. It is evident that OBR delivers second-order accuracy, while M-OBR
(FCR) exhibits a trend toward a first-order scheme. iFCR(2) gives L1 and L2 errors and convergence
rates that are nearly identical to those given by OBR.

introduced earlier. OBR fails to preserve linear densities at R = 154, while M-OBR
(FCR) fails at R = 212. Therefore, for this particular grid, the admissible pseudo-
time step for OBR is approximately 1.4 times larger than that for M-OBR (FCR).
Additionally, we observe that while OBR exhibits a graceful loss of accuracy once
the OBR mesh motion conditions (25)-(26) are violated, M-OBR (FCR) becomes
numerically unstable. This is most likely due to the loss of monotonicity in M-OBR
(FCR) discussed and demonstrated in Sections 5 and 7.3, respectively. We also note
that iFCR is more robust than FCR, however it does not duplicate the robustness of
OBR.

Similarly, Table 13 displays the L1 error in remapping the linear density ρ(x,y) =
x on the smooth nonorthogonal cyclic grid (60). In this case OBR fails to preserve
linear densities at R = 15, while M-OBR (FCR) fails at R = 24. Therefore, for this
particular grid, the admissible pseudo-time step for OBR is approximately 1.6 times
larger than that for M-OBR (FCR). Additionally, we observe that iFCR is more
robust and more accurate than FCR, however the L1 remap error does not converge
to that of OBR as the number of iterations increases.
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R = 213 R = 212 R = 211 R = 155 R = 154 R = 153 R = 100 R = 50

OBR 1.32e-13 1.42e-13 1.60e-13 4.60e-09 4.06e-06 1.53e-05 1.97e-03 6.48e-03

FCR 1.32e-13 5.32e-08 1.10e-06 2.26e-03 2.35e-03 2.44e-03 5.73e+04 8.50e+11

iFCR1 1.32e-13 1.42e-13 1.60e-13 1.36e-03 1.64e-03 1.39e-03 1.72e+02 1.29e+09

iFCR2 1.32e-13 1.42e-13 1.60e-13 2.29e-03 1.14e-03 1.17e-03 4.61e+01 3.92e+08

iFCR3 1.32e-13 1.42e-13 1.60e-13 4.60e-09 4.01e-05 1.32e-04 2.90e+01 1.32e+10

iFCR4 1.32e-13 1.42e-13 1.60e-13 4.60e-09 4.01e-05 1.32e-04 2.64e+01 2.29e+08

Table 12 L1 errors in the OBR, M-OBR (FCR) and iFCR remap of a linear density function on
the 64×64 tensor-product grid, for different values of the pseudo-time step 1/R. Here iFCR1 =
iFCR(2), iFCR2=iFCR(20), iFCR3 = iFCR(200) and iFCR4=iFCR(1000). Errors smaller than 1e-8
are highlighted. OBR fails to preserve linear densities at R = 154, while M-OBR (FCR) fails at
R = 212, resulting in a pseudo-time step advantage for OBR of 212/154≈ 1.4. Beyond this point,
OBR exhibits a graceful loss of accuracy; M-OBR (FCR) becomes numerically unstable. iFCR is
more robust than FCR, however it does not duplicate the robustness of OBR.

R = 25 R = 24 R = 23 R = 16 R = 15 R = 14 R = 10 R = 5

OBR 2.32e-14 4.49e-14 2.15e-13 4.52e-10 4.14e-05 5.13e-04 1.16e-03 2.45e-03

FCR 2.32e-14 3.63e-07 1.67e-06 8.60e-04 1.16e-03 1.69e-03 5.74e-03 1.09e-02

iFCR1 2.32e-14 4.49e-14 2.15e-13 1.52e-03 3.13e-03 4.95e-03 8.08e-03 1.38e-02

iFCR2 2.32e-14 4.49e-14 2.15e-13 4.52e-10 7.48e-05 6.89e-04 3.03e-02 7.89e-02

iFCR3 2.32e-14 4.49e-14 2.15e-13 4.52e-10 7.48e-05 6.89e-04 1.93e-02 3.44e-02

iFCR4 2.32e-14 4.49e-14 2.15e-13 4.52e-10 7.48e-05 6.89e-04 1.93e-02 3.39e-02

Table 13 L1 errors in the OBR and M-OBR (FCR) remap of a linear density function on the
64×64 smooth nonorthogonal grid, for different values of the pseudo-time step 1/R. Here iFCR1

= iFCR(2), iFCR2=iFCR(20), iFCR3 = iFCR(200) and iFCR4=iFCR(1000). Errors smaller than
1e-8 are highlighted. OBR fails to preserve linear densities at R = 15, while M-OBR (FCR) fails
at R = 24, resulting in a pseudo-time step advantage for OBR of 24/15≈ 1.6. iFCR is more robust
than FCR, however the L1 error does not converge to that of OBR as the number of iterations
increases.

8.4 Computational cost

From Theorem 4 we know that (43) decouples into a set of independent single-
variable inequality-constrained optimization problems whose solution is given by
(45). In other words, the computational cost of M-OBR (FCR) is quite low. On
the other hand, the OBR formulation is a globally coupled inequality-constrained
optimization problem. It is therefore of considerable practical interest to assess the
performance penalty incurred by the need to solve a global optimization problem.
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The algorithms used to solve M-OBR (FCR) and OBR formulations are de-
scribed in Section 5. Table 14 presents preliminary timing results using MatlabTM

implementations of M-OBR (FCR), iFCR, and OBR. For accurate estimates of the
computational cost we choose the examples of Section 8.2. We make two observa-
tions.

First, while a direct comparison of our implementation of M-OBR (FCR) and
the closely related SFCR method implemented in Fortran, see Liska et al (2010,
p.1490), is not possible, we note that the computational cost of our MatlabTM imple-
mentation is in the range of the computational cost of the Fortran implementation.
We achieve this by employing only vectorized MatlabTM operations, which are del-
egated to fast computational kernels. The linear (ten-fold) scaling of the mesh-to-
mesh computational cost reported in Liska et al (2010, p.1490) is evident in our case
when meshes are sufficiently large, i.e. when the computational overhead associated
with the MatlabTM environment becomes negligible.

Second, noting that additional studies with more efficient implementations of
M-OBR (FCR) and, especially, OBR are needed, we can already see that the com-
putational cost of OBR is proportional, up to a very modest constant, to the cost
of M-OBR (FCR). On average, OBR is only 2.1 times slower than M-OBR (FCR).
Considering the gains in accuracy and robustness as well as the less restrictive con-
ditions on admissible mesh motions, OBR is a strong alternative to M-OBR (FCR).
Finally, for iFCR we observe that approximately 20 flux iterations per remap can be
employed at the cost of OBR.

Sine

cells remaps OBR FCR ratio iFCR(2) ratio iFCR(20) ratio

64×64 320 7.3 4.2 1.7 4.4 1.7 7.4 1.0
128×128 640 49.5 25.4 1.9 27.6 1.8 50.5 1.0
256×256 1280 390.6 176.5 2.2 198.9 2.0 387.8 1.0
512×512 2560 3662.8 1812.5 2.0 2156.6 1.7 4955.4 0.7

Peak

64×64 320 8.4 4.9 1.7 5.1 1.6 8.7 1.0
128×128 640 57.8 28.5 2.0 31.0 1.9 55.7 1.0
256×256 1280 418.6 183.8 2.3 203.2 2.1 448.7 0.9
512×512 2560 4528.6 1832.9 2.5 2264.0 2.0 5156.8 0.9

Shock

64×64 320 9.8 4.9 2.0 4.9 2.0 8.2 1.2
128×128 640 88.9 28.1 3.2 31.1 2.9 54.1 1.6
256×256 1280 438.6 184.7 2.4 220.4 2.0 409.0 1.1
512×512 2560 3214.6 1794.1 1.8 2237.4 1.4 4806.3 0.7

Table 14 Comparison of the computational costs (times are in seconds) of OBR, M-OBR (FCR),
iFCR(2) and iFCR(20) as measured by MatlabTM wall-clock times on a single Intel Xeon X5680
3.33GHz processor, for density functions defined in (61), (62a) and (63) and the cyclic grid (59).
Ratios of OBR times and FCR/iFCR(2)/iFCR(20) times are also reported. The cost of OBR is
proportional, up to a modest constant, to the cost of M-OBR (FCR). The average cost ratio is only
2.1. The OBR to iFCR(2) cost ratio is 1.9. The OBR to iFCR(20) cost ratio is 1.0.
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9 Conclusions

In this chapter we formulate and study a new class of optimization-based, conser-
vative, bound and linearity preserving remap algorithms (OBR). The use of an opti-
mization setting allows us to separate accuracy considerations from the enforcement
of physical bounds by making the former the objective of optimization, while the
latter is used to define the constraints in the optimization problem. In so doing we
obtain a scheme that is provably linearity preserving and bound-preserving on arbi-
trary unstructured grids, including grids with non-convex polygonal or polyhedral
cells.

Rigorous characterization of the relationship between the OBR and the FCR al-
gorithm of Liska et al (2010) is another key contribution of this chapter. Specifically,
we prove that the FCR is equivalent to an inequality-constrained optimization prob-
lem, termed M-OBR, which is derived from OBR by replacing its constraints by a
set of simpler sufficient conditions for the local bounds. These conditions are decou-
pled box constraints derived using a worst-case local analysis to simplify the origi-
nal coupled inequality constraints. Using the relationship between the constraints in
OBR and M-OBR (FCR) we prove that the feasible set of M-OBR (FCR) is always
contained in the feasible set of OBR. It follows that asymptotically OBR is at least
as accurate as M-OBR (FCR). Furthermore, numerical comparison between OBR
and the iterated FCR (iFCR) strongly suggest that the latter provides an iterative
solution algorithm for the global optimization problem in the OBR formulation.

Succinctly, our theoretical and computational results establish the following hi-
erarchy among the OBR, FCR and iFCR methods:

• OBR defines a “master” optimization formulation for the remap problem, charac-
terized by a global set of linear constraints derived from physical considerations;

• FCR simplifies the master optimization problem by decoupling the linear con-
straints, which reduces the size of the feasible set;

• iFCR is an iterative procedure that under some conditions may recover the OBR
solution.

Because FCR is motivated by flux-corrected transport (FCT), this hierarchy opens
up an interesting possibility that FCT and iterative FCT, see Kuzmin et al (2005),
may also be connected to a “master” global optimization formulation for the selec-
tion of accurate and monotone fluxes in transport algorithms.

The computational examples in this chapter provide further illustration of the
hierarchy among these methods. For smooth cyclic grids with moderate displace-
ments there are no significant differences in the accuracy and the convergence rates
of M-OBR (FCR) and OBR. However, on cyclic grids with large displacements the
smaller feasible set of M-OBR (FCR) can adversely impact its accuracy and ro-
bustness. In particular, we demonstrate that on such grids M-OBR (FCR) defaults
to a first-order accurate scheme, while OBR achieves the theoretically best possi-
ble accuracy (second order) for a linearity-preserving scheme. Furthermore, in a
series of large-displacement examples we show that the OBR formulation admits
a larger pseudo-time step (1.4 to 1.6 times) and that M-OBR (FCR) can suffer nu-
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merical breakdown due to the loss of monotonicity in low-order fluxes based on
swept-region computations. In contrast, OBR does not require the computation of
low-order fluxes; at the same time, the employed computation of high-order fluxes
using swept regions is safe because monotonicity is enforced separately, through in-
equality constraints. Finally, a “torture” test reveals that under certain conditions the
smaller feasible set of M-OBR (FCR) can lead to the loss of qualitative information
about the shape of the remapped density function.

Preliminary studies show that for a set of standard remap test problems the cost
of OBR is proportional, up to a very modest constant, to the cost of M-OBR (FCR).
On average, not counting potential gains from the time-step advantage of OBR, it is
only about twice as expensive as FCR. This suggests that OBR can be competitive
in practical applications where a (i) provably linearity-preserving (and otherwise
optimally accurate) and (ii) bound-preserving method is desired.

The extension of the OBR approach to systems, and further theoretical and com-
putational studies, including formal analysis of iFCR as an iterative solution algo-
rithm for OBR will be the subject of a forthcoming paper.
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